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Supervised vs Unsupervised learning

+ Supervised learning: Given (x;,y;),i =1,...,n,learn a
functionf: X — Y.
+ Categorical Y: classification
- Continuous Y': regression
+ Unsupervised learning: Given only (x;),i =1,...,n, can
we infer the underlying structure of X?
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Why do unsupervised learning?

- Raw data cheap. Labeled data expensive.

- Save memory/computation.

* Reduce noise in high-dimensional data.

+ Useful in exploratory data analysis.

+ Often a pre-processing step for supervised learning.
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Cluster analysis

Discover groups such that samples within a group are more
similar to each other than samples across groups.
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Applications of clustering
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Image Segmentation

http://people.cs.uchicago.edu/ pff/segment
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Human population structure
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Clustering Web2.0 workloads
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Clustering graphs

Newman, 2008
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Vector quantization to compress
images

Bishop, PRML
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Ingredients of cluster analysis

+ A dissimilarity function between samples.
+ A loss function to evaluate clusters.
+ Algorithm that optimizes this loss function.

Sriram Sankararaman Clustering



Outline

Dissimilarity functions
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The Dissimilarity function

+ Choice of dissimilarity function is application dependent.
* Need to consider the type of features.
« Categorical, ordinal or quantitative.

+ Possible to learn dissimilarity from data (later).
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Dissimilarity based on features

- Data point x; has features xj,j =1,...,p.
+ One choice of dissimilarity function is the Euclidean

distance
p
XI,XI)— ZXU_XII
j=1

+ Resulting clusters invariant to rotation and translation of
features but not to scaling.

« If the features have different scales, standardize the data.
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Standardization

Without standardization With standardization
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Standardization not always helpful
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Clustering algorithms
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Clustering algorithms
K-means
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K-means: Idea

* K clusters each summarized by a prototype pu.

+ Assignment of data x; to a cluster represented by
K

responsibilities rj € {0, 1} with Z re =1.
k=1
+ An example with 4 data points and 3 clusters.
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n K

= Loss function J = > > " ric|lx; — ull3-
i=1 k=1
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K-means: minimizing the loss
function

* How do we minimize J w.r.t (ri, pg)?
+ Chicken and egg problem

« If prototypes known, can assign responsibilities.
- If responsibilities known, can compute prototypes.
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K-means: minimizing the loss
function

* How do we minimize J w.r.t (ri, pg)?
+ Chicken and egg problem

« If prototypes known, can assign responsibilities.
- If responsibilities known, can compute prototypes.

* We use an iterative procedure.
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K-means: minimizing the loss
function

+ E-step: Fix ug, minimize J w.r.t. ri.
+ Assign each data point to its nearest prototype.
* M-step: Fix ri, minimize J w.r.t. uy.
+ Set each prototype to the mean of the points in that cluster,
ie., Mk = Ei rikXi.
> Tk
+ This procedure is guaranteed to converge.
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K-means: minimizing the loss
function

+ E-step: Fix ug, minimize J w.r.t. ri.

+ Assign each data point to its nearest prototype.
* M-step: Fix ri, minimize J w.r.t. uy.

+ Set each prototype to the mean of the points in that cluster,

ie., Mk = Zi rikXi.
> Tk

+ This procedure is guaranteed to converge.
- Converges to a local minimum.

+ Use different initializations and pick the best solution.
+ May still be insufficient for large search spaces.
+ Other ways include a split-merge approach.
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How do we initialize K-means?

- Some heuristics

+ Randomly pick K data points as prototypes.
+ Pick prototype i + 1 to be farthest from prototypes {1,...,i}.
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Loss function J after each iteration

1000

500+
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How to choose K?

+ Like choosing K in KNN.
» The loss function J generally decreases with K.
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How to choose K?

+ Gap statistic

- Cross-validation: Partition data into two sets. Estimate
prototypes on one and use these to compute the loss
function on the other.

+ Stability of clusters: Measure the change in the clusters
obtained by resampling or splitting the data.

+ Non-parametric approach: Place a prior on K. More
details in the Bayesian non-parametric lecture.
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Limitations of K-means

+ Hard assignments of data points to clusters can cause a
small perturbation to a data point to flip it to another
cluster.
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Limitations of K-means

+ Hard assignments of data points to clusters can cause a
small perturbation to a data point to flip it to another
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+ Sensitive to outliers.
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+ Works poorly on non-convex clusters.
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Limitations of K-means

+ Hard assignments of data points to clusters can cause a
small perturbation to a data point to flip it to another
cluster.

+ Solution: GMM

- Assumes spherical clusters and equal probabilities for
each cluster.

+ Solution: GMM
+ Clusters change arbitrarily for different K.
- Solution: Hierarchical clustering
+ Sensitive to outliers.
+ Solution: Use a robust loss function.
+ Works poorly on non-convex clusters.
+ Solution: Spectral clustering.
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Clustering algorithms

Gaussian Mixture Model (GMM)
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Gaussian Mixture Model

 Probabilistic story: Each cluster is associated with a
Gaussian distribution. To generate data, randomly choose
a cluster k with probability 7w, and sample from its

distribution.
K

+ Likelihood Pr(x Zwk/\/(x\uk, Y «) where
k=1

K
Z 0<m <1

9 0.5 '

00 0.5 1
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Gaussian Mixture Model

* Loss function is the negative log likelihood

n K
—log Pr(x|m, 1, X) = =) log {Z N (X ke Zk)}
i=1 k=1

+ Why is this function difficult to optimize?
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Gaussian Mixture Model

* Loss function is the negative log likelihood

n K
—log Pr(x|m, 1, X) = =) log {Z N (X ke Zk)}
i=1 k=1

+ Why is this function difficult to optimize?

+ Notice that the sum over the components appears inside
the log, thus coupling all the parameters.
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Gaussian Mixture Model

+ Each x; is associated with a latent variable
Zj = (Z,'1 e ,Z,'K).
+ Given the complete data (x,z) = (x;,z),i=1,...,n
+ We can estimate the parameters by maximizing the
complete data log likelihood.

N K
log Pr(x, z|m, 11, X) = > > zi {log mx + log N (X;| 1k, Tk )}

i=1 k=1

* Notice that the 7, and (ux, Xx) decouple. Trivial
closed-form solution exists.
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Gaussian Mixture Model

+ Each x; is associated with a latent variable
Zj = (Z,'1 e ,Z,'K).
+ Given the complete data (x,z) = (x;,z),i=1,...,n
+ We can estimate the parameters by maximizing the
complete data log likelihood.

N K
log Pr(x, z|m, 11, X) = > > zi {log mx + log N (X;| 1k, Tk )}

i=1 k=1

* Notice that the 7, and (ux, Xx) decouple. Trivial
closed-form solution exists.
* Need a procedure that would optimize the log likelihood by
working with the (easier) complete log likelihood.
“Fill-in” the latent variables using current estimate of the
parameters.
+ Adjust parameters based on the filled-in variables.
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The Expectation-Maximization (EM)
algorithm

+ E-step: Given parameters, compute
kN (X |1k Zk)
Sy TN (Xl k)
+ M-step: Maximize the expected complete log likelihood

ri 2 E(zk) =

n K
ElogPr(x,z|m, D)) = > Y ri {log mk + log N (iluk, k) }
i=1 k=1
To update the parameters
= > Mk = Do MikXi 5, = > (X — ) (% — k)"
n .’ il > Tk

+ Iterate till likelihood converges.
+ Converges to local optimum of the log likelihood.
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GMM: Relation to K-means

+ E-step in GMM a soft version of K-means. ry € [0, 1]
instead of {0, 1}.

+ M-step in GMM estimates the probabilities and the
covariance matrix of each cluster in addition to the means.

* All ¢ are equal. ¥4 = 62/. As 62 — 0, rx — {0,1}, and the
two methods coincide.
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K-means vs GMM

* Loss function: + Minimize negative
minimize sum of log likelihood.
squared distance. - Soft assignment of

+ Hard assignment of points to clusters.
points to clusters. - Can be used for

+ Assumes spherical non-spherical
clusters with equal clusters with
probability of a different
cluster. probabilities.
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Clustering algorithms

K-medoids
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K-medoids

+ Squared Euclidean distance loss function of K-means not
robust.

+ Only the dissimilarity matrix may be given.

+ Attributes not quantitative.
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K-medoids

n K
= Use L1 loss function J = ) " ril|x; — pk 11 instead of

i=1 k=1
squared Euclidean distance.

+ Recall connection between linear and L1 regression.
+ Use an iterative procedure as before.
+ Prototype is the median of the points assigned to a cluster.
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Clustering algorithms

Hierarchical clustering
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Hierarchical Clustering

+ Organize the clusters in a hierarchical way.
* Produces a rooted binary tree (dendrogram).

1 2 4 .
?tep 0 ?tep ?tep ?tep 3 ?tep >a g gl omerative

divisive

<
T T T T T
Step4 Step3  Step2 Stepl Step 0
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Hierarchical Clustering

+ Bottom-up (agglomerative): Recursively merge two groups
with the smallest between-cluster similarity.

+ Top-down (divisive): Recursively split a least-coherent (e.g.
largest diameter) cluster.

+ Users can then choose a cut through the hierarchy to
represent the most natural division into clusters (e.g.
where intergroup similarity exceeds some threshold).

?tepO ?tepl ?tepZ ?tep3 ?tep4 >agglomerative

divisive

< | | | | |
Step4 Step3 Step2 Step1 Step 0
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Hierarchical Clustering

+ Dissimilarity for two disjoint groups G and H, d(G, H) is
computed from pairwise dissimilarities D(i,j),i inG,j € H.
- Single linkage: tends to yield extended clusters.

Dsi (G, H) = minica jenD(i,])
- Complete linkage: tends to yield round clusters.
Dci(G, H) = maxica jenD(i, j)

- Group average: tradeoff between the two. Not invariant
under monotone increasing transform.

Z D(i,j)

ieG,jeH

Dga(G, H)
aa( nGH
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Clustering algorithms

Spectral clustering
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Spectral Clustering

+ Represent datapoints as vertices V of a graph G.
+ Each pair of vertices is connected by an edge.

Edges have weights W. Large weights mean that adjacent
vertices are similar.

+ The graph construction depends on the application.

g an - = = -
- .. IEI.-... l. ... ..- il
= ....-;I » " ! '..
¥ .-.-l.. : i '“_:..-. -
= : - : -.-El ._f'_
- g n e N
" g = n

Sriram Sankararaman Clustering



Graph partitioning

+ Clustering partitions the vertices of the graph. A good
clustering places dissimilar vertices in different partitions.

+ The loss function for a partition of (A, V — A) is given by the
cut cut(A,V — A) =3 icajev—a Wi

* Find a partition that minimizes the cut (Mincut criterion).

+ Does this criterion produce good clusters?
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Graph partitioning

+ Clustering partitions the vertices of the graph. A good
clustering places dissimilar vertices in different partitions.

+ The loss function for a partition of (A, V — A) is given by the
cut cut(A, V — A) = > icajev—a Wi

* Find a partition that minimizes the cut (Mincut criterion).

+ Does this criterion produce good clusters?
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Graph partitioning

+ A good partition should separate dissimilar vertices and
should produce balanced clusters.

* A loss function that favors such clusters is Normalized cut

cut(A,B)  cut(B,A)
Ncut(A, B) = +
( ) ZieA,j Wi ZieB,j Wi
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Graph partitioning

+ A good partition should separate dissimilar vertices and
should produce balanced clusters.
* A loss function that favors such clusters is Normalized cut
A B B. A
Neut(A, B) = SUAB) | cut(B, A)
ZieA,j Wij ZieB,j Wi/’
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Graph partitioning

+ A good partition should separate dissimilar vertices and
should produce balanced clusters.
* A loss function that favors such clusters is Normalized cut
A B B. A
Nout(A, B) = ZAA-B) |, cut(B.A)
ZieA,j Wij ZieB,j Wi/’

+ Minimizing normalized cut is NP-hard.
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Spectral Clustering

- One way of approximately optimizing normalized cuts
leads to spectral clustering.
+ Overview
+ Build a weighted graph G = (V, E, W).
+ Construct a matrix L = f(W) (different variants of spectral
clustering result from different functions f.
- Compute the eigenvectors of the k smallest eigenvalues of
L. These provide a new representation of the original data
points.
+ Cluster the points in this new representation (e.g. using
K-means).
* Note that there is no guarantee on the quality of the
solution.
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Spectral Clustering

R,
TN

- %

K-means, K=2 Spectral clustering
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Spectral Clustering
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Eigenvalues of L Eigenvectors of L
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Spectral Clustering

+ Set D = diag(W1) and compute the Laplacian
L=1-Dw.
* Intuition:
- ldeal case: If the graph has K components (clusters are
separable), the k smallest eigenvalues are 0.
+ The indicator vectors on each of the components span the
eigenspace of 0. Trivial to assign datapoints to clusters.

Ly
Ly
. Ly
1, = 0,i=1,....k
- Can be extended to a case where the clusters are not
completely distinct. The eigenvectors of L will still be close

to the indicator vectors provided the eigengap |Ax — Ak11] is
large relative to the perturbation.
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Spectral Clustering

K-means, K=2 Spectral clustering

Sriram Sankararaman Clustering



Spectral Clustering
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Image segmentation using Specitral
Clustering

Shi and Malik, 2000
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Learning Dissimilarity

- Suppose a user indicates that certain objects are “similar”:
(xi, x;) € S if x; and x; are similar

- Consider learning a dissimilarity that respects this
subjectivity

D0, ) = 1% — xilla = /(i — %) TA(x; - )

 Learning such a dissimilarity is equivalent to replacing x by
v/Ax and then applying standard Euclidean distance.
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Learning Dissimilarity

+ A simple way to define a criterion for the dissimilarity

. 2
mina Z 1% — Xjlla
(xi,X%)es

st Y = xlla>1
(Xi,X)€D

A=0

+ A convex optimization problem. Can be solved by gradient
descent and iterative projection.

+ For more details, see [Xing, Ng, Jordan, Russell, 2003].

Sriram Sankararaman Clustering



Learning dissimilarity
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