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Supervised vs Unsupervised learning

• Supervised learning: Given (xi , yi ), i = 1, . . . , n, learn a
function f : X → Y .

• Categorical Y : classification
• Continuous Y : regression

• Unsupervised learning: Given only (xi ), i = 1, . . . , n, can
we infer the underlying structure of X ?
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Why do unsupervised learning?

• Raw data cheap. Labeled data expensive.
• Save memory/computation.
• Reduce noise in high-dimensional data.
• Useful in exploratory data analysis.
• Often a pre-processing step for supervised learning.
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Cluster analysis

Discover groups such that samples within a group are more
similar to each other than samples across groups.

:
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Image Segmentation

http://people.cs.uchicago.edu/ pff/segment
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Human population structure

Li et al, 2008
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Clustering Web2.0 workloads

Courtesy: Archana Ganapathi
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Clustering graphs

Newman, 2008
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Vector quantization to compress
images

Bishop, PRML
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Ingredients of cluster analysis

• A dissimilarity function between samples.
• A loss function to evaluate clusters.
• Algorithm that optimizes this loss function.
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The Dissimilarity function

• Choice of dissimilarity function is application dependent.
• Need to consider the type of features.

• Categorical, ordinal or quantitative.

• Possible to learn dissimilarity from data (later).
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Dissimilarity based on features

• Data point xi has features xij , j = 1, . . . , p.
• One choice of dissimilarity function is the Euclidean

distance

D(xi , xi ′) =

√√√√ p∑
j=1

(xij − xi ′j )
2

• Resulting clusters invariant to rotation and translation of
features but not to scaling.

• If the features have different scales, standardize the data.
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Standardization
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Standardization not always helpful

Without standardization With standardization
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K-means: Idea

• K clusters each summarized by a prototype µk .
• Assignment of data xi to a cluster represented by

responsibilities rik ∈ {0, 1} with
K∑

k=1

rik = 1.

• An example with 4 data points and 3 clusters.

(rik ) =


1 0 0
0 0 1
0 1 0
0 0 1



• Loss function J =
n∑

i=1

K∑
k=1

rik‖xi − µk‖2
2.

Sriram Sankararaman Clustering



K-means: minimizing the loss
function

• How do we minimize J w.r.t (rik , µk )?
• Chicken and egg problem

• If prototypes known, can assign responsibilities.
• If responsibilities known, can compute prototypes.

• We use an iterative procedure.
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K-means: minimizing the loss
function

• E-step: Fix µk , minimize J w.r.t. rik .
• Assign each data point to its nearest prototype.

• M-step: Fix rik , minimize J w.r.t. µk .
• Set each prototype to the mean of the points in that cluster,

i.e., µk =

∑
i rik xi∑

i rik
.

• This procedure is guaranteed to converge.

• Converges to a local minimum.
• Use different initializations and pick the best solution.
• May still be insufficient for large search spaces.
• Other ways include a split-merge approach.
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How do we initialize K-means?

• Some heuristics
• Randomly pick K data points as prototypes.
• Pick prototype i + 1 to be farthest from prototypes {1, . . . , i}.
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Loss function J after each iteration
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How to choose K ?
• Like choosing K in kNN.
• The loss function J generally decreases with K .

Sriram Sankararaman Clustering



How to choose K ?

• Gap statistic
• Cross-validation: Partition data into two sets. Estimate

prototypes on one and use these to compute the loss
function on the other.

• Stability of clusters: Measure the change in the clusters
obtained by resampling or splitting the data.

• Non-parametric approach: Place a prior on K . More
details in the Bayesian non-parametric lecture.
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Limitations of K-means

• Hard assignments of data points to clusters can cause a
small perturbation to a data point to flip it to another
cluster.

• Solution: GMM
• Assumes spherical clusters and equal probabilities for

each cluster.
• Solution: GMM

• Clusters change arbitrarily for different K .
• Solution: Hierarchical clustering

• Sensitive to outliers.
• Solution: Use a robust loss function.

• Works poorly on non-convex clusters.
• Solution: Spectral clustering.
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Gaussian Mixture Model
• Probabilistic story: Each cluster is associated with a

Gaussian distribution. To generate data, randomly choose
a cluster k with probability πk and sample from its
distribution.

• Likelihood Pr(x ) =
K∑

k=1

πkN (x |µk ,Σk ) where

K∑
k=1

πk = 1, 0 ≤ πk ≤ 1.

:
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Gaussian Mixture Model

• Loss function is the negative log likelihood

− log Pr(x |π, µ,Σ) = −
n∑

i=1

log

{
K∑

k=1

πkN (x |µk ,Σk )

}

• Why is this function difficult to optimize?

• Notice that the sum over the components appears inside
the log, thus coupling all the parameters.
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Gaussian Mixture Model
• Each xi is associated with a latent variable

zi = (zi1, . . . , ziK ).
• Given the complete data (x , z) = (xi , zi ), i = 1, . . . , n

• We can estimate the parameters by maximizing the
complete data log likelihood.

log Pr(x , z |π, µ,Σ) =
N∑

i=1

K∑
k=1

zik {log πk + logN (xi |µk ,Σk )}

• Notice that the πk and (µk ,Σk ) decouple. Trivial
closed-form solution exists.

• Need a procedure that would optimize the log likelihood by
working with the (easier) complete log likelihood.

• “Fill-in” the latent variables using current estimate of the
parameters.

• Adjust parameters based on the filled-in variables.
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The Expectation-Maximization (EM)
algorithm

• E-step: Given parameters, compute

rik
∆
= E (zik ) =

πkN (xi |µk ,Σk )∑K
k=1 πkN (xi |µk ,Σk )

• M-step: Maximize the expected complete log likelihood

E [log Pr(x , z |π, µ,Σ)] =
n∑

i=1

K∑
k=1

rik {log πk + logN (xi |µk ,Σk )}

To update the parameters

πk =

∑
i rik

n
, µk =

∑
i rik xi∑
i rik

,Σk =

∑
i rik (xi − µk )(xi − µk )T∑

i rik

• Iterate till likelihood converges.
• Converges to local optimum of the log likelihood.
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GMM: Relation to K-means

• E-step in GMM a soft version of K-means. rik ∈ [0, 1]
instead of {0, 1}.

• M-step in GMM estimates the probabilities and the
covariance matrix of each cluster in addition to the means.

• All πk are equal. Σk = δ2I . As δ2 → 0, rik → {0, 1}, and the
two methods coincide.
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K-means vs GMM

• Loss function:
minimize sum of
squared distance.

• Hard assignment of
points to clusters.

• Assumes spherical
clusters with equal
probability of a
cluster.

• Minimize negative
log likelihood.

• Soft assignment of
points to clusters.

• Can be used for
non-spherical
clusters with
different
probabilities.
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K-medoids

• Squared Euclidean distance loss function of K-means not
robust.

• Only the dissimilarity matrix may be given.
• Attributes not quantitative.
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K-medoids

• Use L1 loss function J =
n∑

i=1

K∑
k=1

rik‖xi − µk‖1 instead of

squared Euclidean distance.
• Recall connection between linear and L1 regression.

• Use an iterative procedure as before.
• Prototype is the median of the points assigned to a cluster.
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Hierarchical Clustering

• Organize the clusters in a hierarchical way.
• Produces a rooted binary tree (dendrogram).
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Hierarchical Clustering
• Bottom-up (agglomerative): Recursively merge two groups

with the smallest between-cluster similarity.
• Top-down (divisive): Recursively split a least-coherent (e.g.

largest diameter) cluster.
• Users can then choose a cut through the hierarchy to

represent the most natural division into clusters (e.g.
where intergroup similarity exceeds some threshold).
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Hierarchical Clustering

• Dissimilarity for two disjoint groups G and H , d (G, H) is
computed from pairwise dissimilarities D(i , j), i inG, j ∈ H .

• Single linkage: tends to yield extended clusters.

DSL(G, H) = mini∈G,j∈H D(i , j)

• Complete linkage: tends to yield round clusters.

DCL(G, H) = maxi∈G,j∈H D(i , j)

• Group average: tradeoff between the two. Not invariant
under monotone increasing transform.

DGA(G, H) =
1

nGnH

∑
i∈G,j∈H

D(i , j)
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Spectral Clustering

• Represent datapoints as vertices V of a graph G.
• Each pair of vertices is connected by an edge.
• Edges have weights W . Large weights mean that adjacent

vertices are similar.
• The graph construction depends on the application.
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Graph partitioning

• Clustering partitions the vertices of the graph. A good
clustering places dissimilar vertices in different partitions.

• The loss function for a partition of (A, V −A) is given by the
cut cut (A, V − A) =

∑
i∈A,j∈V−A Wij .

• Find a partition that minimizes the cut (Mincut criterion).
• Does this criterion produce good clusters?
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Graph partitioning

• A good partition should separate dissimilar vertices and
should produce balanced clusters.

• A loss function that favors such clusters is Normalized cut

Ncut (A, B) =
cut (A, B)∑

i∈A,j Wij
+

cut (B, A)∑
i∈B,j Wij
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Spectral Clustering

• One way of approximately optimizing normalized cuts
leads to spectral clustering.

• Overview
• Build a weighted graph G = (V , E , W ).
• Construct a matrix L = f (W ) (different variants of spectral

clustering result from different functions f .
• Compute the eigenvectors of the k smallest eigenvalues of

L. These provide a new representation of the original data
points.

• Cluster the points in this new representation (e.g. using
K-means).

• Note that there is no guarantee on the quality of the
solution.
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Spectral Clustering
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Spectral Clustering
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Spectral Clustering
• Set D = diag(W 1) and compute the Laplacian

L = I − D−1W .
• Intuition:

• Ideal case: If the graph has K components (clusters are
separable), the k smallest eigenvalues are 0.

• The indicator vectors on each of the components span the
eigenspace of 0. Trivial to assign datapoints to clusters.

L =


L1 . . .

L2 . . .
. . .

. . . Lk


L1i = 0, i = 1, . . . , k

• Can be extended to a case where the clusters are not
completely distinct. The eigenvectors of L will still be close
to the indicator vectors provided the eigengap |λk − λk+1| is
large relative to the perturbation.
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Spectral Clustering
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Spectral Clustering
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Image segmentation using Spectral
Clustering

Shi and Malik, 2000
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Learning Dissimilarity

• Suppose a user indicates that certain objects are “similar”:
(xi , xj ) ∈ S if xi and xj are similar

• Consider learning a dissimilarity that respects this
subjectivity

D(xi , xj ) = ‖xi − xj‖A =

√
(xi − xj )

T A(xi − xj )

• Learning such a dissimilarity is equivalent to replacing x by√
Ax and then applying standard Euclidean distance.
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Learning Dissimilarity

• A simple way to define a criterion for the dissimilarity

minA

∑
(xi ,xj )∈S

‖xi − xj‖A
2

s.t .
∑

(xi ,xj )∈D

‖xi − xj‖A ≥ 1

A � 0

• A convex optimization problem. Can be solved by gradient
descent and iterative projection.

• For more details, see [Xing, Ng, Jordan, Russell, 2003].
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Learning dissimilarity

Original 2-class data Projected 2-class data
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