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# f(x) = O(g(x))

iff there exists positive constant ¢, and k such that f(x) <= cg(x) for all x>= k. The value of ¢
and k must be fixed for the function f and must not depend on x.
It means f(x) is less than some constant multiple of g(x) and a method used to find

asymptotic(Z& = &1) upper bound.

# Linked List
Advantage:
- Dynamic data structure (can grow and prune)
- Insert and deletion is easy
Disadvantage:
- Use more memory than array because of pointers

- read in order from the beginning

# Hash table, dealing with collision
Advantage:

- search O(1) (worst O(n))

- Insert and deletion is easy

Disadvantage:

- collision
- worst addition O(n)

- When key dict size is small, space overhead of the next pointer is significant

# Binary Search Tree
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Itis a tree data structure where left and right child nodes are bigger or lesser than parent node.
sorting: build tree for arr[:i] from i=1 to n

advantage: insert, search average O(log n), worst O(n)

disadvantage: worst insert (sort) O(n”2) if inputs are sorted as 1,2,3,4,5,.. or 5,4,3,2,1

implementation: array (index means position)

insertion: recursion (from top to bottom)

deletion: move one of leftmost or rightmost of child tree

Lo S0 L.\ W L, &\

# Unbalanced tree : Red-Black tree = BST + color change + rotation

Several constraints enforces “root <-> farthest leaf is no more than twice as long as root <->

nearest leaf ”

# Heap (worst sort: O(log n) : because insertion is always to the end)
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It is a tree data structure where parent node always have bigger or lesser value than all child

nodes.

sorting: build max heap and pop (One of the best sorting methods, no quadratic worst-case
scenarios)

advantage: insert, remove average O(1), worst O(log n)

disadvantage: search O(n)

implementation: array (index means position)

add: add the last, swap if larger than parent (upward)

remove: move the last to the position, swap if smaller (down)
# Heap vs Stack (in RAM memory)

a special region of memory that stores temporary variables.

TP

e (Heap) €9

= EF0]
37124

Znr Efo
37| 24

AEH(Stack) FH

Data: static, global variable. Stay until the program ends.
Heap: dynamic memory allocation. Stay until free or terminal. Size is decided during the runtime.

void main() {
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inti=10;
int arr[i];

}

Stack: static memory allocation. Only live in a scope of function. Size is decided during the

compiler time.

# Depth first search (stack, & =2 Xl 2 6t71)

Depth First Search is an algorithm for traversing or search tree data structure.

implementation: stack and mark visited. Can get path from root to target by saving meta info.

# BFS (queue, == =2 X2 0otJ])
Breadth First Search is another algorithm for traversing or search tree data structure.

implementation: queue and mark visited. Can get path from root to target by saving meta info.

# Memory leak
Type of a resource leak where a program incorrectly manage memory allocation

Memory no longer needed is not released. When object is stored but cannot be accessed.

# Compiler

a software transform code of one language into another, mostly to high-level to low-level
(machine code).

advantage: check syntax error. optimized to be faster.

disadvantage: compilation time.

# Interpreter
a software directly execute instruction written in program language.
advantage: no compilation time. partial execution. find error before complete a program.

productivity. disadvantage: program is not verified. runtime error. slow execution.
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# JIT (Just In Time compilation)

A type of compilation. Involve compilation during execution rather than before execution.
Only required code will be converted into machine code.

ex. JVM (Java Virtual Machine)

# GPL = General Public License
# GNU = GNU's Not Unix!

GPL

Free Software

Free as in Freedom GNU

# OOP
1. Polymorphism : a single interface (function, class) support different types
string = number.StringValue();
string = date.StringValue();
2. Encapsulation (public, private) : bundling of data with the methods that operate on that
data
Prevent mistake by restricting direct access

3. Inheritance : when an object or class is based on another object

# Refactoring
- Renaing
- Encapsulate fields: getter and setter
- Extract class
- Extract common codes

- Introduce assertion

# Lambda function (= Anonymous function)

a function definition that is not bound to an identifier

# Garbage collection

A way of automatic memory management.
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Collector attempts to reclaim gar bage, or memory occupied by objects that are no longer in

use

# Functional programming <-> Procedural programming
Treats computation as the evaluation of functions and avoids changing-state and mutable data
- Always returns the same output for a given input
- Order of evaluation is usually undefined
- Must be stateless. i.e. No side effects
- Good fit for parallel execution

- Increased readability and maintainability
# Process : An instance of a computer program that is being executed.

# Thread : the smallest sequence of programmed instructions which share code and the values

of variables

# Lock

A way that limits on access to a resource where there are many threads of execution

# Deadlock

Pl P2

Each thread is waiting for the other thread to relinquish a lock, they both remain waiting forever.

Can prevent by breaking the symmetry of the locks.

# Semaphore
A variable that is used for controlling access, by multiple processes, to a common resource.

Useful tool in the prevention of race conditions

# Race condition
When two or more threads can access shared data and they try to change it at the same time.

Execution are random. Root 2 2| setuid)l Z2HUYe= Z2)HOZ 24E JIs
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# Context Switch
The process of storing and restoring the state (more specifically, the execution context) of a

process or thread so that execution can be resumed from the same point at a later time.
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# Draw log(x+10)

# Draw sin(x"2)

(TIWANYAWIE
V1 VY

# Draw cos(x”*2)

# Derivative sin(x*2) = 2x cos(x"2)
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# (sinx)*2 + (cosx)*2 =1

a (sinx)’+(cosx)’=1
# Integration by parts

u(z)v(z) = /u’(m)v(m) dz + /u(m)v'(m) dx
/u(m)v'(m) dr = u(z)v(z) — /u'(m)’u(w) dz

# Integral log(x) (integration by parts)

log(x)dx = [ log(x)dx = xlog(x) — [ x-Llog(x)dx
dx dx

= xlog(x) — [ x X +dx = xlog(x) —x + c
#integral 1/x=In|x|+C
#integral 1/(1-x) =-In|1 -x|+C

# integral x sin x (integration by parts) = -x cos x + sinx + C

# integral x cos x (integration by parts) = x sin x + cos x + C

sinx0l2:cosx cosx02:-sinx

cosXx & F:sinx sinx&F:-cosXx

# (g, 8)-definition of limit (epsilon—delta)
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limf(z) =L <= (Ve>0,36>0,VeeD,0<|z—c/<d = |f(x)—L| <e)

r—C

[[Ha=0l 2]

# Derivative (f: R->R) dx/dy = derivative of x “with respect to” y

the sensitivity to change of the function value

) — g LR = (@)

h—0 h

# Partial derivative (f: R*M->R)

of a function of several variables f(x,y,...,z) is its derivative with respect to one of those variables

0 flai,...,ai—1,0; + hyaitq,...,a,) — f(a1,...,a;,...,0,)

9a, f(a) = lim h

# Gradient (f: R*M->R)

a multi-variable generalization of the derivative.

/of o
V5(@) = (5 (@ s (@)

# Jacobbian (f: R*M->R”N)

Generalizes the gradient of a scalar-valued function of multiple variables

Oy ... Oyr
8y 8:131 aa)N
oxr .

Oym .. Oym

o0x1 ox N

# Hessian (f: R"M->R)

Second-order derivatives of a scalar-valued function
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# Inner product x * y = <x, y>

a-b=a'b
by
b
= ({ll aa iy }
by
= a]_b]_ +{12E}2 + e + anbn
n
= Z a;bi,
i—1
# Outer product (2 & 2)
a®b= ab”
451
aa
= (by b - by )
iy
a by apby a1 by,
azby  azby az by,
a'nbl ﬂvtb? anbn

# Orthogonal vectors £ 1 ¥

1.

inner product xey =<x,y>=0

Pfo\
0x10x,
3 f

0x, 0%,

02 f
x2 )
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# Orthogonal matrix
AAT=E _ A'=A"

(E: identity matrix)

1.

# Orthonormal
1. inner product x e y = <x, y>=0
2. |ixll =1, [lyll =1 (L2 norm)

# Linearly independence

A set of vectors is said to be linearly independent, if one of the vectors in the set can’t be defined

as a linear combination of the others

# Determinant (det(A) = 0 <-> A*-1 not exists)

A useful value that can be computed from the elements of a square matrix.

A= b‘:ad—bc.
c d
a b e
Al=|d e fl=a|° ’f—b‘d {FH“’E ©
, h i g i g h
g h i
= aei + bfg+ edh — ceg — bdi — afh.
!1135 a1
a2 5 23 5{.121 45
a:f.l ﬂ»e.z a3 31 a3z

# Properties of det
1. Identity : det(l) = 1
2. Transpose: det(A"T) = det(A)
3. Inverse: det(A*-1) =1/ det(A)
4. Multiplication: det(AB) = det(A)det(B)

# Eigenvector of a linear transformation

Av = Av. (v: eigenvector, lambda: eigenvalue)
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a non-zero vector that only changes by an scale (eigenvalue)
(dEEE A0l 28 et Zu0OF KD KHAIel A==t JF &l = 00] Ot:! 2 H])

—

# How to calculate Eigenvector?
Au = Au
(A —AJu=20

Eigenvectors u should not be zero-vector => there should be no inverse matrix

det(A — AI)

Therefore, =0 (characteristic equation)

# Eigendecomposition (Only diagonalizable square matrix can be factorized )
Al vivy v, |=[ vy vy - Ay, |
A 0
A
0 AJd _. A=PAP

A2 : “A” should have n linearly independent eigenvectors
9 =2 SJt? Easy to calculate det(A), A2, AM1, ...
det(A)=det(PAP)
=det(P)det(A)det(P)”
=det(\)
=y, <= det(inv(A)) = 1/det(A)

# Singular Value Decomposition (SVD)

generalization of eigendecomposition to m x n matrix

M=UXV"*

# Matrix inversion

Ais invertible if there exists B such that AB =BA =1,

B is uniquely determined by A and is called the inverse of A, denoted by A~

# Pseudoinverse A+

carpedm20


https://carpedm20.github.io

a generalization of the inverse matrix to m x n matrix

A=UZV"
A=V’
7 . 1/01
A=U 'O Vm— A'=V| - U’
: 1/0. 0
0 /o,

Use to compute a 'best fit' (least squares |Ax-b|=0) solution to a system of linear equations

#(HREE2 ZR)FHA0| =Mot= £ =2 M (m x n matrix) oHE Fot= 2 E

AX=B _; geyp)1=0, X=A"B geypy=0, X=AB

# Norm of one thing

a function that assigns a strictly positive length or size to each vector:
- Scalar: p(av) = |a| p(v)
= Sum:p(u+ V) <p(u) +p(v)
- Positive : p(v) =20

- Zero-vector : If p(v)=0thenv=0

# L1 norm

x| = im.
r=1

# L2 norm (Euclidean norm)

"

2

x| = e [
k=1

A norm measures the size of a single thing,

A metric measures distances between pairs of things.
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# Metric of two thing (distance function)
A function that defines a distance between each pair of elements of a set.
- Symmetry : d(x, y) = d(y, X)
- Sum :d(x, 2) < p(x, y) + p(y, 2)
- Positive : p(x,y) =20
- Zero-equality : If p(x,y)=0thenx =y

# Discrete metric

if x =y, d(x,y) = 0. Otherwise, d(x,y)=1.

# Euclidean distance

= \/Z(Q'z' —pi)?.

# Newton Method (=& HAE)

finding repeatedly better approximations to the roots (or where f(x) = 0) of a real-valued function.

B f(zn)
I'(zn)

- Should be continuous and differentiable

Lp+l = Tn
until |x_n+1 - x_n| (change) is small

- Can only find one among multiple answers (dependent on initial x_0)

- When gradient is zero

# Root of a function

# Cartesian coordinate system (x, y)
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:x j|z// y
-7l

# Polar coordinate system (r, ¢)

(3, 60°)

(4,210°)

Cartesian -> Polar
x = f(r,0) =rcostl

y=g(r,0)=rsind

# Find n prime numbers => 0f| 2t £ A HIUI A 2| Xl (sieve of Eratosthenes)

HEE - B EEE oo
EEN [ BN RN B
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Input: an integer n > 1.

Let A be an array of Boolean values, indexed by integers 2 to n,
initially all set to true.

for i = 2, 3, 4, ...,|not exceeding m
if A[i] is true:
forl Jj = i%, i%+i, i%+21i, i%+3i, ,I not exceeding n:
A[j] := false.

Output: all i such that A[i] is true.

# Metric (distance function)
Defines a distance between each pair of elements of a set
ex) Euclidean, Discrete, Levenshtein distance (but no KL-divergence b/c not symmetric)

d(p,q) =d(q,p) = \/((h —p1)? + (@2 —p2)* + -+ (g — Pn)’

# NP (Nondeterministic Polynomial Time)

| I*‘

\ NP-Hard / NP-Hard
| |

P=NP=

NP-Complete

-Complexity

P # NP

Sudoku is in NP (quickly checkable) but does not seem to be in P (quickly solvable)
NP is the set of all decision problems where the 'yes'-answers can be verified in polynomial

time O(n?k) by a deterministic Turing machine, or solvable by a non-deterministic Turing

machine
(polynomial time @ 0ll —1 solutionOl &= solution®@! Xl OtH Xl 22 &= U=XKI)

#P( Polynomial Time)
P is the set of all decision problems which can be solved in polynomial time by a deterministic

Turing machine. Since they can be solved in polynomial time, they can also be verified in polynomial

time. P is a subset of NP.
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# NP-hard (at least as hard as the hardest problems in NP)
H is NP-hard when for every problem L in NP, there is a polynomial-time reduction from L (easy)
to H (hard), that is given a solution for L we can verify it is a solution for H in polynomial time.

Solve any NP-hard problem in polynomial time would solve all NP problem

# NP-hard but not NP-complete :

given a program and its input, will it run forever? : undecidable because of infinite run

# NP-complete
Both in NP and NP-hard. Any NP problem can be reduced into NP-complete.

# Turing machine

a mathematical model of computation with tape

@ s ee “Site. | symbol | symbol | Positn | State
\ A @ @ -> A

A $ $ -> B
o B @ @ <- C
‘e C $ @ -> C
° C @ $ -> B

Tape (memory)
Head
State register : AorBor C

D=

Table of instruction : action table

# Turing completeness
A system (like programming language) is said to be Turing complete if it can simulate any
Turing machine.

It could be used to solve any computation problem.

# Finite-state machine
A mathematical model of computation without memory (tape)
- State : description of the status of a system

- Transition : a set of actions to be executed
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[ SA]

# Probability
A likelihood of an event of random variable to be occurred. Sum of p for all possible disjoint events

are 1.

# Random variable

a function that maps outcomes to numerical quantities

a variable whose values are numerical outcomes of a random phenomenon. (ex. Coin
front/back)

# PDF (Probability Density Function)
A relative likelihood that the value of the random variable would equal that sample

(the absolute likelihood of continuous random variable on any particular value is 0. 0.0231= &=
b
Prla < X <b] = f fx(z)dz.
a

# PDF condition :
1. f(x)>0

) /: flz)dz =1

# How PDF >1 ?

Uniform distribution defined in 0 < x < 1/2

# Variance

Expectation of the squared deviation of a random variable from its mean
- 2
Var(X) = E[(X — p)?].

(how far the values are spread out from mean)

# Covariance

Cov[X, Y] = E[(X — E[X])(Y — E[Y])]
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# Bernoulli distribution
g=(1—-p) fork=0
P fork=1

special case of the Binomial distribution where a single experiment/trial is conducted (n=1)

# Binomial : n for # of trial, p

the discrete probability distribution of the # of successes in a sequence of n independent

experiments

Pr(k;n,p) = Pr(X =k) = ( )p"'(l _ )k

()=
where k k!(n — k)! (combination w/o considering order)

# Multinomial: n for # of trials, p_1, p_2, .., p_k (sum p_j=1)

flzy,...,zp;n,p1,...,0) = Pr(X; =27 and ... and X}, = )
T.',! T xj k B
a:l‘.---a':;;!pl XX P when >,z =n

0 otherwise,

# Gaussian: mean, variance

~(x-u)*
1 . 2

# Multivariate Normal distribution:

generalization of the one-dimension to higher dimension

exp(—5(x — )= (x — p))
(2m)*| %]

fx(ml,...,:l?k) =

# Moment

A quantitative measure of the shape of a set of points.

p = = E[X].

1. Mean:
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2. Variance :

3. Skewness :

4. Kurtosis

( @ measure of the asymmetry )

# i.i.d (Independent and Identically Distributed)
1. Independent : not related to previous result
2. lIdentically Distributed : probability distribution is identical over time

To simplify the underlying mathematics of many statistical methods (not Markov chain
P(x_t|x_t-1))

# Bayesian probability <-> Frequentist
Bayesian interpretation of probability is a degree-of-belief interpretation.

Take into account of prior distribution (can say there was life on Mars a billion years ago is 1/2)
- Advantage:

1. Prior : easy to apply domain knowledge

2. Uncertainty: can predict uncertainty. Can detect anomaly

- Disadvantage :
1. Choice of prior

2. Computationally intensive : if it is required to sample lots of variables

# Frequentist probability

limiting value of the number of successes in a sequence of trials
p = lim —
n—oo N

(p of life on Mars a billion years ago is can’t be assigned)

# Mean, Median and Mode
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|
mode

50% | 50%

-
median

il

mean

o0
1. Mean : Expected value in probability distribution. > mP(‘B), I 2 f(z) de
2. Median : the value separating the higher half.

P(X < m) :P(sz):f_m fla)do = .

3. Mode : Most frequent value in a data set

# Joint probability distribution
Join probability P(X=x, Y=y,...) is probability that each of X, Y, ... falls in any particular values.

# Conditional probability distribution

P(A N B)

PA | B) = o

P(Y|X) is probability of Y when X is known to be a particular value

# Independence

P(ANnB)=PA)PB)

Two events are called independent if and only if P(AnB) = P(A)P(B)
# Marginal distribution

Marginal distribution of subset of a collection of random variables is the probability

distribution of the variables contained in the subset
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Pr(X=z)=) Pr(X=z,Y=y)=) Pr(X=zx|Y=y)Pr(Y =y),

px(z) = / pxy(z,y)dy = [ pxy (@ | 3) py (4) dy,

Y Yy

# Bayes rule

Likelihood Prior

Heow probable is the ev How probab

given that our hypothesis is true?

P(e | H) P(H)

P(H | e)= Ple)

Marginal

- Likelihood: how probable is the [evidence] given the hypothesis
- Prior: how probable was [hypothesis] before observing evidence
- Posterior: how probable is [hypothesis] given the observed evidence

- Priori (Marginal): how probable is the new [evidence] under all hypothesis
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[ Haledd ]

# Maximum Likelihood Estimation

9 € {argmax £(8; )},
0cO

finding the parameter that maximize the likelihood of making the observations given the

parameters

# ((all) Batch) Gradient descent

Repeat until convergence {

0; — 0; —a>-71(0)

o8;

} w:=w-Ir*dL/dw

compute on ALL training set

# Stochastic gradient descent
compute on a SAMPLE of training set. "stochastic approximation" of the "true" cost gradient.
- Faster matrix operations (computation)
- Parallelization
- Convergence is slower than second-order gradient methods (Newton’s method)
- But benefit of computational efficient is greater

- Can converge faster if learning rate is adjusted

# Regression
Predict continuous valued output

(linear regression, k-nearest neighbors, nonlinear regression, polynomial regression)

# Linear regression
_ o~
Yi = Bol + Brizin + -+ BpTip + & = X; B+ ¢€i,

Pros: easy to compute
Cons: Sensitive to Outliers, limited to Linear Relationships, Data should be Independent,

Update: gradient descent with least square (+ L2 regularization)
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N
L) =~ D~ F@)? + AT 82
=1

J .
/ : least square error + 12-regularizer

# Classification
Predict a category (probability for each) of new data

(logistic regression, decision tree, k-nearest neighbors, boosting ...)

# Logistic regression (a generalized linear model)

ho ()= —

- QT
\+Qe"

Pros: easy to compute
Cons: scalability, Data should be Independent

Update: gradient descent with (sigmoid) cross entropy loss.

m

1@) = —log ([[P0ilz)) = = X log (P(ilz)) = D —yizi + log(l + €¥)

i

m

1 . .
J(@) = — )’ Cost(hy(x?),y?)
m i=l

Cost(hg(x), ) = — log(hg(x)) ify=1
Cost(hg(x), ¥) = —log(1 — hy(x)) fy=0

(maximize log likelihood)

# Sigmoid cross entropy loss:

loss = z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))

# Ensemble : use multiple learning algorithms to obtain better performance
- Bootstrap aggregating (bagging) : ensemble vote with equal weight
- Boosting : a set of weak learners -> strong learner (reduce bias)
- Stacking : train additional merger model (theoretically represent any of the ensemble

techniques)

# Supervised

labeled training data
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# Unsupervised

Unlabeled training data

# Semi-supervised

Only part of the training data is labeled

# Why semi-supervised is important

Overcoming the problem of lack of data by adding cheap and abundant unlabeled data

# Clustering
task of grouping where objects in the same group (called a cluster) are more similar

(k-means, hierarchical clustering)

# k-means - Centroid-based clustering (NP-hard)
Pros: Simple, No training-time. Always converge
Cons: can’t distinguish all distribution (Z & &t & 0| 0| &), NP-hard (local minimum), wrong k
Update:
1. Random initialize centroids

2. Repeat {Assignment, Update}

Finding k : Elbow method

- Sum of the squared distance between each member of the cluster and its centroid

2000
1
p”r/

Within Groups Sum

1000
|
=

Number of Clusters

- k=6 at which the SSE decreases abruptly

# Hierarchical clustering
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1
r

N

1. Agglomerative (bottom up) : starts with N cluster. Merge two successively.

2. Divisive (top down) : starts with one cluster. Splits successively.

# Overfitting
&
\f/

test error increases while training error decreases

best model : where the validation error is global minimum.

# Cross validation
Validation method to generalizability on an test set.
Independent round training prevent to be optimistically biased.
- One round : split a data train/validate/test and train and validate

- Repeat multiple rounds with different partitions and average the validation results.

# k-fold cross validation

[teration 11| 0900 00900000000000000

29909900 110000000009
0200000000900 00000000

290000000000000900 0

All data | >

Partitioned into k equal sized subsamples. Repeated k times (the folds) and the k results are
averaged
Pros: when test set is too small, performance estimate is less sensitive to the partitioning of the

data
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# Reinforcement learning
RL is modeled as a Markov Decision Process.

<reward, state, action, policy, state transition>

# Markov Chain (Markov process)

P(Xp | X1, Xi—2, --- » X1, X0) = P(Xx | Xi-1)

an

a stochastic model describing a sequence of possible events

=> 0| M state0il 2t conditioningct= sequential&t stochastic &2 2

# Hidden Markov model

By B,
P(1|HOT) 2 P(1| COLD) 5
P@2|HOT) | = |4 P@|coLD)| =] 4
P(3|HOT) 4 P(3 | COLD) K

a statistical Markov model in which the system being modeled is assumed to be a Markov

process with unobserved (i.e. hidden) states.
i s e e

# Monte Carlo Method <-> Deterministic Algorithm
B e e e e
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Deterministic Non Deterministic
X . x .
J ey
i LN
accept— e e o e
. 7 LN\
J/ L ] L ] [ ]
f(n) . f(n)
N _
. e« — reject
. | </
J, accept or - ¢ accept
¥ ./reject

Use repeated random sampling to obtain numerical results (overall distribution)

B e s e s
# MCMC (Markov chain Monte Carlo)
HHE

E[X] = / XP(X|Y)dX
X

Posterior mean HAEO HEDI 20 ii.d. JIE S 6t

N
/ XP(X|Y)dX ~ Z P(X;|Y)
x i=1 M =2l (approximation), Sampling algorithms based on

constructing a Markov chain.

1. Gibbs Sampling

2. Metropolis—Hastings algorithm

1. Gibbs Sampling (\in MCMC)

p (ml;i+1} |m(i—|—1} (i+1) _(4) mg})

j B REEE L TS ERER

A MCMC algorithm for obtaining a sequence of observations which are approximated from a specified

multivariate probability distribution, when direct sampling is difficult.

A OISHOIAIH XS otLS =J| ME X_0= HES)| HSCHS, 1 MEWAM K& 1A =X 8o 2 Hote
LEOICHL nBIHel S 2 <, 00122 S22 DEE 422 =Ch MCMC= NXHE 2l HOlA HIZ
NALESl o2 2= X3S &0l Ol SotHA S22 S 8 Ao BHH, A B2 2 ebfel A= Melet
LIOIKlE D8 = AMRIGS, et XHE A S=2 = ol SN2 Ols= ot H Us & M2 UI0IEHE
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: break the curse of dimensionality

0o
A 02

ct& : doesn't allow the variables to evolve jointly

2. Metropolis—Hastings algorithm (\in MCMC)
???

# Markov Decision Process <S, A, R, T, discount>

Framework for modeling decision making with Markov process.

Algorithm :
1. Dynamic programming

1(s) and V(s) is updated alternatively
n(s) := argmax, {Z Pu(s,8') (Ra(s,8') + vV(S’))}

V(s) =) Pry(s,5) (Rae)(5,8) + V()
s’ (policyJt AJ| W0
maxJt 8 S
2. Value iteration

m(s) is calculated within V(s)

Vie1(s) :==max o > Pu(s,s') (Ra(s,8') +Vi(s'))
s (policy?t 21J| T =0l
max)

If assignment became equal, it's Bellman equation

V*(s) = mgx{R(s, a) + v Z P(s']s,a)V*(s")}.

(ROl randomness gt
)

3. Policy iteration (Policy evaluation + Policy improvement)
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starting
Vo

Policy evaluation Estimate v;
Iterative policy evaluation

Policy improvement Generate n’ > 7
Greedy policy improvement

1) Policy evaluation:

evaluation
vV —V"

V
si—>greedy(V)

improvement

VseS: ‘/zj-kl (';) — Z T(Sr 7Tk,(.9), S’)[R(S: ﬂ'k(s)a S/) + /\I‘/)ﬂ(q,)]

2) Policy Improvement:

Tre1(8) = arg max E T(s,a,s")[R(s,a,s") +~V™(s")]
a
5!

# Reinforcement Learning

Policy:

m(als) = P[Ar = a | St = s]

Return:

o0
Gt = Re41 +7Rev2 + .. = Z “y‘k Retk+1
k=0
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ve(s) = Z 7(als) (Ra + v Z 2 V(s )

acA s'eS

Q-value:

qﬂ’(s' a) — R? + A,,' Z p:S’ VT;(S,

s'eS

Monte Carlo in RL

Monte-Carlo policy evaluation uses empirical mean return
instead of expected return

Importance Sampling

Estimate the expectation of a different distribution
Ex~p[f(X)] =Y P(X)f(X)
=) QX )*f (X)
X
~Ex-o E %f(X)]

Objective function in RL

J(0) = Er, [1]

= Z d(s) Z TL'Q(S- 3)Rs,a

sES acA
VoJ(0) = Zd S)Z mo(s, a)Volog mg(s, a)Rs.a
sES ac.A

— Ex, [Vs log (s, a)r]

]E'I'T.t_,l [VH |0g ’.«TH(S. 3):"]
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VoE,[f(z)] = Vy Z p(x) f(x) definition of expectation

= Z Vop(z) f(z) swap sum and gradient
\Y%
=Y p(=) %()x) () both multiply and divide by p(z)
z Pz

1
= Zp(a:)vg logp(z) f(z) use the fact that Vg log(z) = ;ng

= E,[f(z)Vglogp(x)] definition of expectation
samples x and (X) score function f p(X) after a parameter update
Vo log p(x)
for the mea

Policy Gradient

- Cons : using Q is low variance but biased

Policy Gradient Theorem

m The policy gradient theorem generalises the likelihood ratio
approach to multi-step MDPs

m Replaces instantaneous reward r with long-term value Q™(s. a)

m Policy gradient theorem applies to start state objective,
average reward and average value objective

Theorem

For any differentiable policy my(s, a),
for any of the policy objective functions J = Ji, J,yr. or ﬁJavv,
the policy gradient is

VeJ(0) = E,, [Vglogma(s,a) Q™ (s, a)]

REINFORCE (Monte-Carlo Policy Gradient)
- Return = unbiased (but high variance) estimation of Q(a, s)
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Monte-Carlo Policy Gradient (REINFORCE)

m Update parameters by stochastic gradient ascent
m Using policy gradient theorem
m Using return v; as an unbiased sample of Q™(s;, a;)

Al = aVylog mg(st, as) vy

function REINFORCE
Initialise # arbitrarily
for each episode {s;.a;.r.....s7_1.ar_1.r7} ~ 1 do
fort=1to T —1do
0 < 0+ aVylog mg(st, a)ve
end for
end for
return
end function

## To deal with high variance of REINFORCE

1. Baseline (or Advantageous function)

Reducing Variance Using a Baseline

m We subtract a baseline function B(s) from the policy gradient
m [ his can reduce variance, without changing expectation

E., [Volog mg(s, a)B(s)| = Z d™(s) ZV(;}TQ(S. a)B(s)

sES

- Z d™B(s)Vy Z (s, a)
ses acA

=0

m A good baseline is the state value function B(s) = V™ (s)
m So we can rewrite the policy gradient using the advantage
function A™ (s, a)

A™(s,a) = Q™ (s, a) — VT(s)
Ved(0) =E,, [Vylogmy(s.a) A" (s, a)]

Sum pi=1

2. Actor critic

carpedm20


https://carpedm20.github.io

m Monte-Carlo policy gradient still has high variance

m We use a critic to estimate the action-value function,

Quw(s,a) =~ Q™ (s, a)

m Actor-critic algorithms maintain two sets of parameters

Critic Updates action-value function parameters w
Actor Updates policy parameters f, in direction
suggested by critic

m Actor-critic algorithms follow an approximate policy gradient

Ved(0) = E;, [Vglogmy(s.a) Qu(s.a)]
Al = aVylogmy(s. a) Qu(s. a)

Critic Updates w by linear TD(0)
Actor Updates # by policy gradient

# Q-learning (Value iteration update, off policy)

Q(S.A) = (5. 4) +a R+ max Q(S'.)  Q(5.4))
+ epsilon greedy
a simple value iteration update, using the weighted average of the old value and the new

information

7(Se+1) = argmax Q(St+1,4)
epsilon greedy : ?

# SARSA (on-policy)
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SA

Q(S,A) < Q(S,A) +a (R+7Q(S", A) — Q(S, A))

Initialize ()(s,a), Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @) (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., s-greedy)
Q(S,A) + Q(S. A) + o[R+7Q(S", A) — Q(S, A)]
S« S A« A"

until S is terminal

Figure 6.9: Sarsa: An on-policy TD control algorithm.

On-Policy Control With Sarsa

Starting Q
N Q. T

Every time-step:
Policy evaluation Sarsa, @ = g

Policy improvement e-greedy policy improvement

# Parametric

a finite number of parameters which does not depend on data

(linear regression, logistic regression)

# Nonparametric learning
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Models become more complex with an increasing amount of data.

(K-nearest neighbor, Decision Trees, Histogram)

# Sequential data

1. Markov (decision) process : P depends only on the state attained in “one-step” before

event
P(Xn — :Bn|Xn—1 = :Bn—l:Xn—Z = Tp-2,5--- ,Xg = 33[!) = P(Xn = $n|Xn—1 - mn—l)

2. RNN

# Neural Network

computing systems inspired by the biological neural networks composed of neurons

# SVM loss

1
=5 ZL,- +  AR(W)

regularization loss

L; = Z max(0, w}"x,- —wix;i + A)

1 data loss
J#yi =

1l | delta 1 -

] 11 I score

scores for other classes score for correct class

score of the correct class to be higher than all other scores by at least a margin of delta.

(delta and regularizer coefficient works as same so only need one of them)

# Softmax loss

L; = —log

1. Information theory : minimizing cross-entropy between softmaxed probability and true
distribution

2. Maximum Likelihood Estimation: minimizing the negative log likelihood of the correct
class

f-=np.max(f) <« Stablize softmax

p = np.exp(f) / np.sum(np.exp(f))

# Sigmoid loss
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1 e’

T 1tec e +1

S(x)

Minimizing cross-entropy between sigmoided probability and true distribution

# RNN
h_t=tanh(W [x_t; h_t-1] + b)
o = softmax(W h_t + b)

#LSTM
f,i,c’,o=f(W][x_t;h_t-1]+b). f, i, 0:sigmoid, ¢’: tanh
ct=f*ct1+i*c

h_t=o0 *tanh(c_t)

1. NS xdthE HIESZ & A o=
2. 0|8 cE NRDE=>cZ&E
A

3. = x2O] HAN =8 210 L2l => h2

# Vanishing & Exploding gradient
- 0<=0d sigmoid x <= 1/4
- 0O<=0dtanhx <=1
Gradient contributions from “far away” steps become zero by chain rule
1. Proper initialization
2. RelLU instead of tanh or sigmoid

3. LSTM : if f gate is 1 : no vanishing gradient => long term dependencies can be learned

# Backpropagation
1. Forward pass
2. Compute error
3. Backward pass
4. Repeat
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initialize network weights (often small random values)
do
forEach training example named ex
prediction = neural-net-output(network, ex) // forward pass
actual = teacher-output(ex)
compute error (prediction - actual) at the output units
compute Aw, for all weights from hidden layer to output layer // backward pass
compute Aw; for all weights from input layer to hidden layer // backward pass
continued
update network weights // input layer not modified by error estimate
until all examples classified correctly or another stopping criterion satisfied
return the network

# Backpropagation Through Time

A weight is updated with sum of gradient for each time step (because weights are shared)

# Black box model vs White box model
Advantage:
- Performance
- End-to-End optimization
Disadvantage:
- Interpretability
- Can this network tell a Husky from a Poodle?
- Which objects are easy to classify for the algorithm, which are difficult?
- Which part of a dog is the most important for being able to classify it correctly? The tail or the
foot?

- If | photoshop a cats head on a dog, what happens, and why?

# Curse of dimensionality
With classical non-parametric learning algorithms (e.g. nearest-neighbor, SVM, etc.), the learner
will need to see at least one example for each of these many configurations.

# of data is exponentially increasing so solution in low dim can’t be applied to higher dim
# VAE vs GAN
VAE: maximum likelihood

- assign high p to any point that occurs frequently (also blurry images).

- where the latent is important

GAN: GAN loss {D_real + D_fake} + {G_fake} is highly dependent on how D is optimal
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- avoid assigning high p to points that the discriminator recognizes as fake (such as
blurry images)
- GAN convergence does not guarantee the performance convergence
- Mode collapsing
1. Solving MiniMax problem:
But train D, G alternatively makes NN undistinguishable between minimax and
maximin

In maximin, G could just generate single image that can fake the D (non optimal)

G* = min max V(G, D).
G D

G* = max min V (G, D).
D G

2. No quantitative loss:
Fake or not is subjective based on D (unlike autoencoder loss in VAE)

Even when G does not cover all modes, it’s still fine with GAN loss
Blurry image : VAE high p, GAN low p

# Softmax = exp(x_i) / sum_j exp(x_j) /)t 2 t& &t 0| =

0 or infinite division. Can avoid with - max(x_i) to all terms.

# REINFORCE = E[ R d log(p) ]S & & 5t24 o

Ery [Vologme(s, a)r]

- Reducing Variance Using a Baseline : E[ (R - mu) d log(p) ]. Gradient Ot 2 J| i 2 0l update

t£&3s.

- The advantage function has lower variance since the baseline compensates for the

variance introduced by being in different states.

# Policy-Based RL
& & : learn stochastic policies, continuous action spaces
&t & : Evaluating a policy is typically inefficient and high variance

(may receive very different rewards for similar or even identical behavior)
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[ Problem solving ]

http://ronniej.sfuh.tk/array-pair-sum/

# Anagram O(2n) = O(n)
def anagram(a, b):
if len(a) != len(b):

return False

counter = {}
forcin a:
¢ = c.lower()

if ¢ not in counter:
counter[c] = 1
else:
counter[c] += 1
forcin b:

¢ = c.lower()

if c not in counter:

return False
counter[c] -= 1
if counter[c] < 0:
return False
return True
print(anagram('Eleven plus two', "Twelve plus onn'))
# Max contiguous sum
def max_cont_sum(array):
max_sum = -9999
max_sum_sofar = array[0]

for num in array[1:]:
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max_sum_sofar = max(num, max_sum_sofar+num)
max_sum = max(max_sum, max_sum_sofar)

return max_sum

print(max_cont_sum([1,2,3,-100,1,2,1]))

# Kth Largest Element in Array
def find_k(array, k):
for k_i in range(k):
for idx in range(k_i+1, len(array)):
if array[idx] >= array[k_i]:
array[idx], array[k_i] = array[k_i], array[idx]
print(array)

return array[k]

print(find_k([0,-1,5,4,2,1,3], 3))

# Powerset (permutation)
#1([3, 1, 8])
#={[3]+xinf([1,5]) }
# +{xinf([1,5])}
def powerset(x):
answers =[]
if len(x) <= 1:
return [x, []]
else:
for item in powerset(x[1:]):
answers.append([x[0]] + item) # [1] + ([2], [])
answers.append(item) # [2], []

return answers

# reverse string and omit multiple space
def reverse(string):

split_string =[]

tmp =""
for char in string:

if char ==
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if tmp 1=""
split_string.append(tmp)
tmp =""
else:
tmp += char
split_string.append(tmp)

return " ".join(reversed(split_string))

def reverse(string):

return " ".join([word[::-1] for word in string[::-1].split()])

def reverse(string):

return " ".join(reversed(string.split()))
# Return pairs where sum is k
def array_pair_sum(array, k): # O(n*2)
answers =[]
array.sort() # O(n logn)
for idx, num in enumerate(array):
if kK - num in array[idx+1:]: # O(n"2)
answers.append([num, k-num])

return answers

def array_pair_sum(array, k): # O(nlogn)
answers =[]
array.sort() # O(n logn)
left, right = 0, len(array) - 1
while left < right:
tmp = array[left] + array[right]
if tmp == k:
answers.append([array[left], array[right]])
elif tmp < k:
left += 1
else:
right += 1

return answers
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def array_pair_sum(array, k): # O(n)
answers =[]
table = {}

for idx, num in enumerate(array):
if k - num in table:
answers.append([num, k-num])
else:
table[num] = True

return answers

# check combined two string
def check(a, b, merge):
if len(a) + len(b) != len(merge):

return False

if not a or not b or not merge:
if a + b == merge:
return True
else:

return False

if a[0] '= merge[0] and b[0] !'= merge[0]:
return False

elif a[0] == merge[0] and check(a[1:], b, merge[1:]):
return True

elif b[0] == merge[0] and check(a, b[1:], merge[1:]):

return True
return False
print(check("abc", "def", "dabcef"))
# Check binary tree
def isBT(tree, min_val=-999 max_val=999):

if tree is None:

return True
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if not min_val <= tree.val <= max_val:

return False

return isBT(tree.left, min_val, tree.val) and \

isBT(tree.right, tree.val, max_Val)

# Convert array in-place using constant extra space.
def get_index(idx, N):
return (idx % 3) * N + idx // 3

def convert_array(array):

N = len(array) // 3

for idx in range(len(array)):

swap_idx = get_index(idx, N)

while swap_idx < idx:

swap_idx = get_index(swap_idx, N)

array[idx], array[swap_idx] = array[swap_idx], array[idx]

return array

array = list("1234abcdzxyw")

print(convert_array(array))

HHHH

# Quicksort

def partition(array, start, end):
if start >= end:
return start
else:
pivot = start
for idx in range(start+1, end+1):
if array[idx] <= array[start]:
pivot += 1
array[idx], array[pivot] = array[pivot], array[idx]
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array[start], array[pivot] = array[pivot], array[start]
print(array[start:pivot], array[pivot], array[pivot+1:end+1])
return pivot

def quicksort(array):
def _quicksort(array, start, end):
if start >= end:
return
else:
pivot = partition(array, start, end)
_quicksort(array, start, pivot-1)
_quicksort(array, pivot+1, end)
return _quicksort(array, 0, len(array) - 1)

# Sort
def mergesort(array):
less =]
equal =]
greater =]

if len(array) > 1:
pivot = array[0]
for x in array:
if X < pivot:
less.append(x)
elif x == pivot:
equal.append(x)
else:
greater.append(x)

return mergesort(less) + equal + mergesort(greater)
else:
return array

# Binary search

import math

def binary_search(array, find):
start=0
end = len(array) - 1

while True:
idx = int(math.floor((start + end)/2.0))
if find == array[idx]:
return idx
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elif find < array[idx]:
end =idx -1
elif find > array[idx]:
start = idx + 1
if start >= end:
if find == array[start]:
return start
return False

def fibonacci(num):
if num == 0:
return 0
elif num == 1:
return 1
else:
return fibonaci(num-1) + fibonaci(num - 2)

def fib(n, cache={}):
ifn==1:
cache[1] =1
return 1
elifn==2:
cache[2] =1
return 1
else:
if n not in cache:
cache[n] = fib(n-1, cache) + fib(n-2, cache)
return cache[n]

import numpy as np

class NQueeun(object):
def __init_ (self, size):
self.size = size
self.rows = ]

def place(self, start_row=0):
if len(self.rows) == self.size:
print(self.rows)
return self.rows
else:
for row in range(start_row, self.size):
if self.is_safe(row, len(self.rows)):
self.rows.append(row)
return self.place()
else:
last_row = self.rows.pop()
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return self.place(last_row + 1)

def is_safe(self, row, col):
for thread_col, thread_row in enumerate(self.rows):
if row - thread_row + col - thread_col == 0:
return False
elif row - thread_row == col - thread_col:
return False
elif row == thread_row or col == thread_col:
return False
return True

def print(self):
board = np.array([[''] * n] * n)
for q in self.rows:
board[self.rows.index(q), q] = 'Q'
print(board)

n=9

queen = NQueeun(n)
queen.place(5)
queen.print()

import heapq
import numpy as np

G = {1: {2:10, 3:12}, 2:{3:1, 4:5}, 3:{4:2}, 4:(}}

def dijkstra(G, start):

d={}
prev = {}

for vin G.keys():
d[v] = np.inf
prev[v] = None

d[start] = 0
s =]
q=1
for v in G.keys():
heapq.heappush(q, [np.inf, v])

while len(q) != O:

u = heapqg.heappop(q)
s.append(u)
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for v in G[u[1]].keys():
if d[v] > d[u[1]] + G[u[1]][v]:
divl = d[u[1]] + G[u[1]][v]
prev[v] = u[1]

print d
dijkstra(G, 1)
import unittest
class DijkstraTest(unittest. TestCase):

def test_dijkstra(self):
self.assertEqual(1,1)

if _name__=='_ main__"
unittest.main()
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[Z2]
0o oo
f(x) = O(g(x))

dICelAE FHeE

SHAIENOIS ZHEHE Sel™ U OfEH oHZ & el

Hhollel MXl Ecl Zo Hed, 282 o E ot

Heap vs Stack

depth first search : stack + 2t & =2 Xl 3

H 22l :is not released, not accessible
compiler, interpreter, jit =& 112 2| &9l
compiler?t interpreter2| & &
Encapsulation (public, private) : isolating implementation details, prevent mistake
==============> Refactoring

Lambda function

Garbage collection

Functional programming : stateless

GPL

[==]

dx/dy = derivative of x “with respect to” y

Integration by parts

/udv:uv—fvdu.

log(x+10) _1d4 2t
sin(x*2) & et
sin(x2) Ol =2l 2t

==============> |imit2| & 2|
1. Derivative : sensitivity to change of value
2. Partial derivative

3. Gradient

4. Hessian

5

. Jacobian
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Find n prime number
metric2| & 2| 2t 0fl Al (Euclidean 2510 1A

np-complete

s
i}

Turing machine : tape (memory), header, state, transition. mathematical model of computation
==============> Turing completeness : A system that can simulate any Turing machine
(can solve any computation problem)

Finite state machine : state, transition

‘OHﬂ
k=

binomial, multinomial, gaussian
==============> random variable0| 2 X : function X: Q—R
- pdf: A relative likelihood that the value of the random variable
- pdfe £A, pdfIt 1 0/&= JtE &= U= 0l R (ex. uniform dist)
Variance
Cov[X. Y] = E[(X — E[XD(Y — E[Y])]
Covariance :
IID : previous results are not related, distribution is identical over time
==============> Bayesian statistics :

interpretation of p is degree-of-belief interpretation. Takes into account of the prior distribution

Joint probability : p when all variable falls into specific value

Conditional probability : p of Y when X is known

P(ANB)

PA|B) = =

Independence

P(A N B) = P(A)P(B)

Marginal : In distribution with collections of variable, p of the variables contained in

the subset

1st, 2nd, 3rd, 4th moment : measure of of the shape of a set of points.

==============> Mean => variance => skewness => kurtosis

s=============D> Bayes rule
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- Likelihood: how probable is the [evidence] given the hypothesis
- Prior: how probable was [hypothesis] before observing evidence
- Posterior: how probable is hypothesis given the observed evidence

- Priori: how probable is the new [evidence] under all hypothesis

Determinant: identity, transpose, inverse, multiplication

Eigenvector: In a linear transformation, non-zero vector that only changes by an scale
Eigendecomposition: should have n linearly independent eigenvectors

Singular Value Decomposition

==============> Matrix inversion

Pseudoinverse : generalization of inverse matrix. Used in finding least squares |Ax-b|=0

solution
A=UZV"
A=VZuU"
. . 1/o,
A=Ul VT — A=V U
% 1/o. 0
0

AX=B _; geyp)1=0, X=A"B geypy=0, X=AB

linearly independence : a linear combination of the others
Orthogonal vector & matrix

==============> Norm : length or size : scalar, sum, positive, zero-vector

==============> Metric : distance : symmetry, sum, positive, zero-equality

Newton Method : approximation to find root of a function. x := x - f/f’

[ 01ele]E ]

==============> Maximum Likelihood Estimation

L2 loss, 12 regularizer, 12 norm
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"

S =) O — h(x;))?
i=0

nn & 2

gradient descent 2| & 2| ot A

stochastic gradient descent 82| 12| J &

regression2| & 2| 2t 0l Al & 12| S (linear regression & &)

linear regression2| & 2|2t & &, A0 0 E &H, optimal2 ¥ =4 (least square)
classification2| & 2| 2t 0l Al (logistic regression 2 &)

logistic regression2| & 2| ot & &

supervised, unsupervised, semi-supervised & 2|

semi-supervisedJt S 28t 0| R

clustering & 2

clustering 0l Al (k means Z &)

kmeansJt & Xl HENH SOOIESt=X €%, ke HEH £&Fot=X

kmeansS| & ) HH(HE2 A28 = U= HO0IH 2EIt ZoHMUS, S A 2040t
UM BN ULSH k -2 &)

cross validationO| & X| (k-fold cross validationO| Zot1) 11&Z M= 017 Z& OOl & It limit St LI Dt)
reinforcement learning2| & 2| (reward, state, action, policy, state transition)

rl 200l E 28 (g-function)

g-learningO| off-policy ! X| on-policy 2! X

ol

H

means

non bayesian 1} bayesian2 Xt 0|

non parametric learnin2| & 2| 2t 0l Al (& i = binomialOlet) =0l 014 S & HLEH pIt

Z 35I| H20l. 8 <2 histogram). sequential dataS & ot = ©| 0l Al (hidden markov,
bayes, rnn)

mn2| & 2|2t A

mnl & & It =& (vanishing gradient) ol 2 2 Istm.

rnndt hidden markovel E&&E HlW (mn2 THet0IE A HoH A 28201 © K X X 8 end-to-end
240l ct gradeint descentdll Al optimal 22! &)

neural network & 0| 0| £ 28 (backpropagation)

mn2| SO0l E 28 (time delayed backpropagation)

big one black box £ 2 1} neural net22 22 (0| & 22 & 2|5t= term0] U =0l 71 0]
ote)S Bl WM S M nn& 2 modulestel 229 HHE (HE2 2E expresivity )t 2 £€8, H&E 2
2t2t0l D 1 2E =2 condition= U RIOF oA 22 2 &)

curse of dimensionality

bayesian setting= @ & CtM =X (distributionS & St= Al trickyot ) 212t = H&tGt=H Qe E )
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prior (CIOIE) 8 EZ 28 : Gibbs Sampling (\in MCMC)
olE 0= 20| X &9

VAE vs GAN

Permutation
N queens

Kth Largest Element in Array

2018.01.31 update

How computer represent floating number : 0.2341234123e-3
How to deal with unbalanced tree

Explain dynamic programming and give me an example
Explain quicksort. Can we do better than n log n. Radix sort
Integral of log x

Difference between process and thread

How to find A-1

Hessian, Jacobian and when these are used in practice
Jacobian is composed of column vector of gradient

What is positive definite

Why newton method has such form (x := x - f/f)
2018.02.05 update
What is central limit theorem

The law of big number
Who can you derive mu(x) = E[x*2] - E[X]"2
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Var(X) = E[(X — E(X))?]
[X? — 2X E(X) + [E(X)]?]
X?) —E[2XE(X)] + [E(X)]?

(X7) =
(X*) - 2E(X) B(X) + [E(X))*
(X7)
E(X7) -

E
E
—=E
=
= E(X*) — 2[E(X)]* + [B(X)]*
[E(X))*

How to sample from arbitrary continuous random variable with uniform distribution: A

X2

general method is the inverse transform sampling method, which uses the cumulative distribution

function (CDF) of the target random variable

Recommended Lectures

- CS231n: Convolutional Neural Networks for Visual Recognition

- £S294-158 Deep Unsupervised Learning
- (CS224n: Natural Language Processing with Deep Learning

- CS294-112 Deep Reinforcement Learning

carpedm20


http://cs231n.stanford.edu/
https://sites.google.com/view/berkeley-cs294-158-sp19/home
http://web.stanford.edu/class/cs224n/
http://rail.eecs.berkeley.edu/deeprlcourse/
https://carpedm20.github.io

