aw
KH
I8

E o
oJ =
30
—
)
<]
—
-
70 Ko
0|
o wm_ 2 A Kl
& <H Wy = o =

-~ &N o ¥ v ©

Contents

carpedm20

https://carpedm20.github.io
https://carpedm20.github.io

f(x) = O(g(x))

iff there exists positive constant ¢, and k such that f(x) <= cg(x) for all x>= k. The value of ¢
and k must be fixed for the function f and must not depend on x.
It means f(x) is less than some constant multiple of g(x) and a method used to find

asymptotic(Z& = &1) upper bound.

Linked List
Advantage:
- Dynamic data structure (can grow and prune)
- Insert and deletion is easy
Disadvantage:
- Use more memory than array because of pointers

- read in order from the beginning

Hash table, dealing with collision
Advantage:

- search O(1) (worst O(n))

- Insert and deletion is easy

Disadvantage:

- collision
- worst addition O(n)

- When key dict size is small, space overhead of the next pointer is significant

Binary Search Tree

carpedm20

https://carpedm20.github.io

Itis a tree data structure where left and right child nodes are bigger or lesser than parent node.
sorting: build tree for arr[:i] from i=1 to n

advantage: insert, search average O(log n), worst O(n)

disadvantage: worst insert (sort) O(n”2) if inputs are sorted as 1,2,3,4,5,.. or 5,4,3,2,1

implementation: array (index means position)

insertion: recursion (from top to bottom)

deletion: move one of leftmost or rightmost of child tree

Lo S0 L.\ W L, &\

Unbalanced tree : Red-Black tree = BST + color change + rotation

Several constraints enforces “root <-> farthest leaf is no more than twice as long as root <->

nearest leaf ”

Heap (worst sort: O(log n) : because insertion is always to the end)

carpedm20

https://en.wikipedia.org/wiki/Binary_search_tree#Sort
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://carpedm20.github.io

tog
DR

v) @ O
2) ()

It is a tree data structure where parent node always have bigger or lesser value than all child

nodes.

sorting: build max heap and pop (One of the best sorting methods, no quadratic worst-case
scenarios)

advantage: insert, remove average O(1), worst O(log n)

disadvantage: search O(n)

implementation: array (index means position)

add: add the last, swap if larger than parent (upward)

remove: move the last to the position, swap if smaller (down)
Heap vs Stack (in RAM memory)

a special region of memory that stores temporary variables.

TP

e (Heap) €9

= EF0]
37124

Znr Efo
37| 24

AEH(Stack) FH

Data: static, global variable. Stay until the program ends.
Heap: dynamic memory allocation. Stay until free or terminal. Size is decided during the runtime.

void main() {

carpedm20

https://carpedm20.github.io

inti=10;
int arr[i];

}

Stack: static memory allocation. Only live in a scope of function. Size is decided during the

compiler time.

Depth first search (stack, & =2 Xl 2 6t71)

Depth First Search is an algorithm for traversing or search tree data structure.

implementation: stack and mark visited. Can get path from root to target by saving meta info.

BFS (queue, == =2 X2 0otJ])
Breadth First Search is another algorithm for traversing or search tree data structure.

implementation: queue and mark visited. Can get path from root to target by saving meta info.

Memory leak
Type of a resource leak where a program incorrectly manage memory allocation

Memory no longer needed is not released. When object is stored but cannot be accessed.

Compiler

a software transform code of one language into another, mostly to high-level to low-level
(machine code).

advantage: check syntax error. optimized to be faster.

disadvantage: compilation time.

Interpreter
a software directly execute instruction written in program language.
advantage: no compilation time. partial execution. find error before complete a program.

productivity. disadvantage: program is not verified. runtime error. slow execution.

carpedm20

https://carpedm20.github.io

JIT (Just In Time compilation)

A type of compilation. Involve compilation during execution rather than before execution.
Only required code will be converted into machine code.

ex. JVM (Java Virtual Machine)

GPL = General Public License
GNU = GNU's Not Unix!

GPL

Free Software

Free as in Freedom GNU

OOP
1. Polymorphism : a single interface (function, class) support different types
string = number.StringValue();
string = date.StringValue();
2. Encapsulation (public, private) : bundling of data with the methods that operate on that
data
Prevent mistake by restricting direct access

3. Inheritance : when an object or class is based on another object

Refactoring
- Renaing
- Encapsulate fields: getter and setter
- Extract class
- Extract common codes

- Introduce assertion

Lambda function (= Anonymous function)

a function definition that is not bound to an identifier

Garbage collection

A way of automatic memory management.

carpedm20

https://carpedm20.github.io

Collector attempts to reclaim gar bage, or memory occupied by objects that are no longer in

use

Functional programming <-> Procedural programming
Treats computation as the evaluation of functions and avoids changing-state and mutable data
- Always returns the same output for a given input
- Order of evaluation is usually undefined
- Must be stateless. i.e. No side effects
- Good fit for parallel execution

- Increased readability and maintainability
Process : An instance of a computer program that is being executed.

Thread : the smallest sequence of programmed instructions which share code and the values

of variables

Lock

A way that limits on access to a resource where there are many threads of execution

Deadlock

Pl P2

Each thread is waiting for the other thread to relinquish a lock, they both remain waiting forever.

Can prevent by breaking the symmetry of the locks.

Semaphore
A variable that is used for controlling access, by multiple processes, to a common resource.

Useful tool in the prevention of race conditions

Race condition
When two or more threads can access shared data and they try to change it at the same time.

Execution are random. Root 2 2| setuid)l Z2HUYe= Z2)HOZ 24E JIs

carpedm20

https://carpedm20.github.io

Context Switch
The process of storing and restoring the state (more specifically, the execution context) of a

process or thread so that execution can be resumed from the same point at a later time.

carpedm20

https://carpedm20.github.io

1
i

Draw log(x+10)

Draw sin(x"2)

(TIWANYAWIE
V1 VY

Draw cos(x”*2)

Derivative sin(x*2) = 2x cos(x"2)

carpedm20

https://carpedm20.github.io

(sinx)*2 + (cosx)*2 =1

a (sinx)’+(cosx)’=1
Integration by parts

u(z)v(z) = /u’(m)v(m) dz + /u(m)v'(m) dx
/u(m)v'(m) dr = u(z)v(z) — /u'(m)’u(w) dz

Integral log(x) (integration by parts)

log(x)dx = [log(x)dx = xlog(x) — [x-Llog(x)dx
dx dx

= xlog(x) — [x X +dx = xlog(x) —x + c
#integral 1/x=In|x|+C
#integral 1/(1-x) =-In|1 -x|+C

integral x sin x (integration by parts) = -x cos x + sinx + C

integral x cos x (integration by parts) = x sin x + cos x + C

sinx0l2:cosx cosx02:-sinx

cosXx & F:sinx sinx&F:-cosXx

(g, 8)-definition of limit (epsilon—delta)

carpedm20

https://carpedm20.github.io

limf(z) =L <= (Ve>0,36>0,VeeD,0<|z—c/<d = |f(x)—L| <e)

r—C

[[Ha=0l 2]

Derivative (f: R->R) dx/dy = derivative of x “with respect to” y

the sensitivity to change of the function value

) — g LR = (@)

h—0 h

Partial derivative (f: R*M->R)

of a function of several variables f(x,y,...,z) is its derivative with respect to one of those variables

0 flai,...,ai—1,0; + hyaitq,...,a,) — f(a1,...,a;,...,0,)

9a, f(a) = lim h

Gradient (f: R*M->R)

a multi-variable generalization of the derivative.

/of o
V5(@) = (5 (@ s (@)

Jacobbian (f: R*M->R”N)

Generalizes the gradient of a scalar-valued function of multiple variables

Oy ... Oyr
8y 8:131 aa)N
oxr .

Oym .. Oym

o0x1 ox N

Hessian (f: R"M->R)

Second-order derivatives of a scalar-valued function

carpedm20

https://carpedm20.github.io

(3

Bxl

of

0x2 | and V2f=

of
\ox, /

(?f ?f
ax? 0x,0x,
2f ?f

0x7 0%, x5
82f 32f

\ 0X,0x, 0x,0x>

Inner product x * y = <x, y>

a-b=a'b
by
b
= ({ll aa iy }
by
= a]_b]_ +{12E}2 + e + anbn
n
= Z a;bi,
i—1
Outer product (2 & 2)
a®b= ab”
451
aa
= (by b - by)
iy
a by apby a1 by,
azby azby az by,
a'nbl ﬂvtb? anbn

Orthogonal vectors £ 1 ¥

1.

inner product xey =<x,y>=0

Pfo\
0x10x,
3 f

0x, 0%,

02 f
x2)

carpedm20

https://carpedm20.github.io

Orthogonal matrix
AAT=E _ A'=A"

(E: identity matrix)

1.

Orthonormal
1. inner product x e y = <x, y>=0
2. |ixll =1, [lyll =1 (L2 norm)

Linearly independence

A set of vectors is said to be linearly independent, if one of the vectors in the set can’t be defined

as a linear combination of the others

Determinant (det(A) = 0 <-> A*-1 not exists)

A useful value that can be computed from the elements of a square matrix.

A= b‘:ad—bc.
c d
a b e
Al=|d e fl=a|° ’f—b‘d {FH“’E ©
, h i g i g h
g h i
= aei + bfg+ edh — ceg — bdi — afh.
!1135 a1
a2 5 23 5{.121 45
a:f.l ﬂ»e.z a3 31 a3z

Properties of det
1. Identity : det(l) = 1
2. Transpose: det(A"T) = det(A)
3. Inverse: det(A*-1) =1/ det(A)
4. Multiplication: det(AB) = det(A)det(B)

Eigenvector of a linear transformation

Av = Av. (v: eigenvector, lambda: eigenvalue)

carpedm20

https://carpedm20.github.io

a non-zero vector that only changes by an scale (eigenvalue)
(dEEE A0l 28 et Zu0OF KD KHAIel A==t JF &l = 00] Ot:! 2 H])

—

How to calculate Eigenvector?
Au = Au
(A —AJu=20

Eigenvectors u should not be zero-vector => there should be no inverse matrix

det(A — AI)

Therefore, =0 (characteristic equation)

Eigendecomposition (Only diagonalizable square matrix can be factorized)
Al vivy v, |=[vy vy - Ay, |
A 0
A
0 AJd _. A=PAP

A2 : “A” should have n linearly independent eigenvectors
9 =2 SJt? Easy to calculate det(A), A2, AM1, ...
det(A)=det(PAP)
=det(P)det(A)det(P)”
=det(\)
=y, <= det(inv(A)) = 1/det(A)

Singular Value Decomposition (SVD)

generalization of eigendecomposition to m x n matrix

M=UXV"*

Matrix inversion

Ais invertible if there exists B such that AB =BA =1,

B is uniquely determined by A and is called the inverse of A, denoted by A~

Pseudoinverse A+

carpedm20

https://carpedm20.github.io

a generalization of the inverse matrix to m x n matrix

A=UZV"
A=V’
7 . 1/01
A=U 'O Vm— A'=V| - U’
: 1/0. 0
0 /o,

Use to compute a 'best fit' (least squares |Ax-b|=0) solution to a system of linear equations

#(HREE2 ZR)FHA0| =Mot= £ =2 M (m x n matrix) oHE Fot= 2 E

AX=B _; geyp)1=0, X=A"B geypy=0, X=AB

Norm of one thing

a function that assigns a strictly positive length or size to each vector:
- Scalar: p(av) = |a| p(v)
= Sum:p(u+ V) <p(u) +p(v)
- Positive : p(v) =20

- Zero-vector : If p(v)=0thenv=0

L1 norm

x| = im.
r=1

L2 norm (Euclidean norm)

"

2

x| = e [
k=1

A norm measures the size of a single thing,

A metric measures distances between pairs of things.

carpedm20

https://carpedm20.github.io

Metric of two thing (distance function)
A function that defines a distance between each pair of elements of a set.
- Symmetry : d(x, y) = d(y, X)
- Sum :d(x, 2) < p(x, y) + p(y, 2)
- Positive : p(x,y) =20
- Zero-equality : If p(x,y)=0thenx =y

Discrete metric

if x =y, d(x,y) = 0. Otherwise, d(x,y)=1.

Euclidean distance

= \/Z(Q'z' —pi)?.

Newton Method (=& HAE)

finding repeatedly better approximations to the roots (or where f(x) = 0) of a real-valued function.

B f(zn)
I'(zn)

- Should be continuous and differentiable

Lp+l = Tn
until |x_n+1 - x_n| (change) is small

- Can only find one among multiple answers (dependent on initial x_0)

- When gradient is zero

Root of a function

Cartesian coordinate system (x, y)

carpedm20

https://carpedm20.github.io

z
- - -7
rd /I
e rd
i
|
| | :
:x j|z// y
-7l

Polar coordinate system (r, ¢)

(3, 60°)

(4,210°)

Cartesian -> Polar
x = f(r,0) =rcostl

y=g(r,0)=rsind

Find n prime numbers => 0f| 2t £ A HIUI A 2| Xl (sieve of Eratosthenes)

HEE - B EEE oo
EEN [BN RN B

carpedm20

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://carpedm20.github.io

Input: an integer n > 1.

Let A be an array of Boolean values, indexed by integers 2 to n,
initially all set to true.

for i = 2, 3, 4, ...,|not exceeding m
if A[i] is true:
forl Jj = i%, i%+i, i%+21i, i%+3i, ,I not exceeding n:
A[j] := false.

Output: all i such that A[i] is true.

Metric (distance function)
Defines a distance between each pair of elements of a set
ex) Euclidean, Discrete, Levenshtein distance (but no KL-divergence b/c not symmetric)

d(p,q) =d(q,p) = \/((h —p1)? + (@2 —p2)* + -+ (g — Pn)’

NP (Nondeterministic Polynomial Time)

| I*‘

\ NP-Hard / NP-Hard
| |

P=NP=

NP-Complete

-Complexity

P # NP

Sudoku is in NP (quickly checkable) but does not seem to be in P (quickly solvable)
NP is the set of all decision problems where the 'yes'-answers can be verified in polynomial

time O(n?k) by a deterministic Turing machine, or solvable by a non-deterministic Turing

machine
(polynomial time @ 0ll —1 solutionOl &= solution®@! Xl OtH Xl 22 &= U=XKI)

#P(Polynomial Time)
P is the set of all decision problems which can be solved in polynomial time by a deterministic

Turing machine. Since they can be solved in polynomial time, they can also be verified in polynomial

time. P is a subset of NP.

carpedm20

https://carpedm20.github.io

NP-hard (at least as hard as the hardest problems in NP)
H is NP-hard when for every problem L in NP, there is a polynomial-time reduction from L (easy)
to H (hard), that is given a solution for L we can verify it is a solution for H in polynomial time.

Solve any NP-hard problem in polynomial time would solve all NP problem

NP-hard but not NP-complete :

given a program and its input, will it run forever? : undecidable because of infinite run

NP-complete
Both in NP and NP-hard. Any NP problem can be reduced into NP-complete.

Turing machine

a mathematical model of computation with tape

@ s ee “Site. | symbol | symbol | Positn | State
\ A @ @ -> A

A $ $ -> B
o B @ @ <- C
‘e C $ @ -> C
° C @ $ -> B

Tape (memory)
Head
State register : AorBor C

D=

Table of instruction : action table

Turing completeness
A system (like programming language) is said to be Turing complete if it can simulate any
Turing machine.

It could be used to solve any computation problem.

Finite-state machine
A mathematical model of computation without memory (tape)
- State : description of the status of a system

- Transition : a set of actions to be executed

carpedm20

https://carpedm20.github.io

[SA]

Probability
A likelihood of an event of random variable to be occurred. Sum of p for all possible disjoint events

are 1.

Random variable

a function that maps outcomes to numerical quantities

a variable whose values are numerical outcomes of a random phenomenon. (ex. Coin
front/back)

PDF (Probability Density Function)
A relative likelihood that the value of the random variable would equal that sample

(the absolute likelihood of continuous random variable on any particular value is 0. 0.0231= &=
b
Prla < X <b] = f fx(z)dz.
a

PDF condition :
1. f(x)>0

) /: flz)dz =1

How PDF >1 ?

Uniform distribution defined in 0 < x < 1/2

Variance

Expectation of the squared deviation of a random variable from its mean
- 2
Var(X) = E[(X — p)?].

(how far the values are spread out from mean)

Covariance

Cov[X, Y] = E[(X — E[X])(Y — E[Y])]

carpedm20

https://carpedm20.github.io

Bernoulli distribution
g=(1—-p) fork=0
P fork=1

special case of the Binomial distribution where a single experiment/trial is conducted (n=1)

Binomial : n for # of trial, p

the discrete probability distribution of the # of successes in a sequence of n independent

experiments

Pr(k;n,p) = Pr(X =k) = ()p"'(l _)k

()=
where k k!(n — k)! (combination w/o considering order)

Multinomial: n for # of trials, p_1, p_2, .., p_k (sum p_j=1)

flzy,...,zp;n,p1,...,0) = Pr(X; =27 and ... and X}, =)
T.',! T xj k B
a:l‘.---a':;;!pl XX P when >,z =n

0 otherwise,

Gaussian: mean, variance

~(x-u)*
1 . 2

Multivariate Normal distribution:

generalization of the one-dimension to higher dimension

exp(—5(x —)= (x — p))
(2m)*| %]

fx(ml,...,:l?k) =

Moment

A quantitative measure of the shape of a set of points.

p = = E[X].

1. Mean:

carpedm20

https://carpedm20.github.io

3
Il
—
=
£}
|

=
o
b
"
b | -

2. Variance :

3. Skewness :

4. Kurtosis

(@ measure of the asymmetry)

i.i.d (Independent and Identically Distributed)
1. Independent : not related to previous result
2. lIdentically Distributed : probability distribution is identical over time

To simplify the underlying mathematics of many statistical methods (not Markov chain
P(x_t|x_t-1))

Bayesian probability <-> Frequentist
Bayesian interpretation of probability is a degree-of-belief interpretation.

Take into account of prior distribution (can say there was life on Mars a billion years ago is 1/2)
- Advantage:

1. Prior : easy to apply domain knowledge

2. Uncertainty: can predict uncertainty. Can detect anomaly

- Disadvantage :
1. Choice of prior

2. Computationally intensive : if it is required to sample lots of variables

Frequentist probability

limiting value of the number of successes in a sequence of trials
p = lim —
n—oo N

(p of life on Mars a billion years ago is can’t be assigned)

Mean, Median and Mode

carpedm20

https://carpedm20.github.io

|
mode

50% | 50%

-
median

il

mean

o0
1. Mean : Expected value in probability distribution. > mP(‘B), I 2 f(z) de
2. Median : the value separating the higher half.

P(X < m) :P(sz):f_m fla)do = .

3. Mode : Most frequent value in a data set

Joint probability distribution
Join probability P(X=x, Y=y,...) is probability that each of X, Y, ... falls in any particular values.

Conditional probability distribution

P(A N B)

PA | B) = o

P(Y|X) is probability of Y when X is known to be a particular value

Independence

P(ANnB)=PA)PB)

Two events are called independent if and only if P(AnB) = P(A)P(B)
Marginal distribution

Marginal distribution of subset of a collection of random variables is the probability

distribution of the variables contained in the subset

carpedm20

https://carpedm20.github.io

Pr(X=z)=) Pr(X=z,Y=y)=) Pr(X=zx|Y=y)Pr(Y =y),

px(z) = / pxy(z,y)dy = [pxy (@ | 3) py (4) dy,

Y Yy

Bayes rule

Likelihood Prior

Heow probable is the ev How probab

given that our hypothesis is true?

P(e | H) P(H)

P(H | e)= Ple)

Marginal

- Likelihood: how probable is the [evidence] given the hypothesis
- Prior: how probable was [hypothesis] before observing evidence
- Posterior: how probable is [hypothesis] given the observed evidence

- Priori (Marginal): how probable is the new [evidence] under all hypothesis

carpedm20

https://carpedm20.github.io

[Haledd]

Maximum Likelihood Estimation

9 € {argmax £(8;)},
0cO

finding the parameter that maximize the likelihood of making the observations given the

parameters

((all) Batch) Gradient descent

Repeat until convergence {

0; — 0; —a>-71(0)

o8;

} w:=w-Ir*dL/dw

compute on ALL training set

Stochastic gradient descent
compute on a SAMPLE of training set. "stochastic approximation" of the "true" cost gradient.
- Faster matrix operations (computation)
- Parallelization
- Convergence is slower than second-order gradient methods (Newton’s method)
- But benefit of computational efficient is greater

- Can converge faster if learning rate is adjusted

Regression
Predict continuous valued output

(linear regression, k-nearest neighbors, nonlinear regression, polynomial regression)

Linear regression
_ o~
Yi = Bol + Brizin + -+ BpTip + & = X; B+ ¢€i,

Pros: easy to compute
Cons: Sensitive to Outliers, limited to Linear Relationships, Data should be Independent,

Update: gradient descent with least square (+ L2 regularization)

carpedm20

https://carpedm20.github.io

N
L) =~ D~ F@)? + AT 82
=1

J .
/ : least square error + 12-regularizer

Classification
Predict a category (probability for each) of new data

(logistic regression, decision tree, k-nearest neighbors, boosting ...)

Logistic regression (a generalized linear model)

ho ()= —

- QT
\+Qe"

Pros: easy to compute
Cons: scalability, Data should be Independent

Update: gradient descent with (sigmoid) cross entropy loss.

m

1@) = —log ([[P0ilz)) = = X log (P(ilz)) = D —yizi + log(l + €¥)

i

m

1 . .
J(@) = —)’ Cost(hy(x?),y?)
m i=l

Cost(hg(x),) = — log(hg(x)) ify=1
Cost(hg(x), ¥) = —log(1 — hy(x)) fy=0

(maximize log likelihood)

Sigmoid cross entropy loss:

loss = z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))

Ensemble : use multiple learning algorithms to obtain better performance
- Bootstrap aggregating (bagging) : ensemble vote with equal weight
- Boosting : a set of weak learners -> strong learner (reduce bias)
- Stacking : train additional merger model (theoretically represent any of the ensemble

techniques)

Supervised

labeled training data

carpedm20

https://carpedm20.github.io

Unsupervised

Unlabeled training data

Semi-supervised

Only part of the training data is labeled

Why semi-supervised is important

Overcoming the problem of lack of data by adding cheap and abundant unlabeled data

Clustering
task of grouping where objects in the same group (called a cluster) are more similar

(k-means, hierarchical clustering)

k-means - Centroid-based clustering (NP-hard)
Pros: Simple, No training-time. Always converge
Cons: can’t distinguish all distribution (Z & &t & 0| 0| &), NP-hard (local minimum), wrong k
Update:
1. Random initialize centroids

2. Repeat {Assignment, Update}

Finding k : Elbow method

- Sum of the squared distance between each member of the cluster and its centroid

2000
1
p”r/

Within Groups Sum

1000
|
=

Number of Clusters

- k=6 at which the SSE decreases abruptly

Hierarchical clustering

carpedm20

https://carpedm20.github.io

1
r

N

1. Agglomerative (bottom up) : starts with N cluster. Merge two successively.

2. Divisive (top down) : starts with one cluster. Splits successively.

Overfitting
&
\f/

test error increases while training error decreases

best model : where the validation error is global minimum.

Cross validation
Validation method to generalizability on an test set.
Independent round training prevent to be optimistically biased.
- One round : split a data train/validate/test and train and validate

- Repeat multiple rounds with different partitions and average the validation results.

k-fold cross validation

[teration 11| 0900 00900000000000000

29909900 110000000009
0200000000900 00000000

290000000000000900 0

All data | >

Partitioned into k equal sized subsamples. Repeated k times (the folds) and the k results are
averaged
Pros: when test set is too small, performance estimate is less sensitive to the partitioning of the

data

carpedm20

https://carpedm20.github.io

Reinforcement learning
RL is modeled as a Markov Decision Process.

<reward, state, action, policy, state transition>

Markov Chain (Markov process)

P(Xp | X1, Xi—2, --- » X1, X0) = P(Xx | Xi-1)

an

a stochastic model describing a sequence of possible events

=> 0| M state0il 2t conditioningct= sequential&t stochastic &2 2

Hidden Markov model

By B,
P(1|HOT) 2 P(1| COLD) 5
P@2|HOT) | = |4 P@|coLD)| =] 4
P(3|HOT) 4 P(3 | COLD) K

a statistical Markov model in which the system being modeled is assumed to be a Markov

process with unobserved (i.e. hidden) states.
i s e e

Monte Carlo Method <-> Deterministic Algorithm
B e e e e

carpedm20

https://carpedm20.github.io

Deterministic Non Deterministic
X . x .
J ey
i LN
accept— e e o e
. 7 LN\
J/ L] L] []
f(n) . f(n)
N _
. e« — reject
. | </
J, accept or - ¢ accept
¥ ./reject

Use repeated random sampling to obtain numerical results (overall distribution)

B e s e s
MCMC (Markov chain Monte Carlo)
HHE

E[X] = / XP(X|Y)dX
X

Posterior mean HAEO HEDI 20 ii.d. JIE S 6t

N
/ XP(X|Y)dX ~ Z P(X;|Y)
x i=1 M =2l (approximation), Sampling algorithms based on

constructing a Markov chain.

1. Gibbs Sampling

2. Metropolis—Hastings algorithm

1. Gibbs Sampling (\in MCMC)

p (ml;i+1} |m(i—|—1} (i+1) _(4) mg})

j B REEE L TS ERER

A MCMC algorithm for obtaining a sequence of observations which are approximated from a specified

multivariate probability distribution, when direct sampling is difficult.

A OISHOIAIH XS otLS =J| ME X_0= HES)| HSCHS, 1 MEWAM K& 1A =X 8o 2 Hote
LEOICHL nBIHel S 2 <, 00122 S22 DEE 422 =Ch MCMC= NXHE 2l HOlA HIZ
NALESl o2 2= X3S &0l Ol SotHA S22 S 8 Ao BHH, A B2 2 ebfel A= Melet
LIOIKlE D8 = AMRIGS, et XHE A S=2 = ol SN2 Ols= ot H Us & M2 UI0IEHE

carpedm20

https://carpedm20.github.io

: break the curse of dimensionality

0o
A 02

ct& : doesn't allow the variables to evolve jointly

2. Metropolis—Hastings algorithm (\in MCMC)
???

Markov Decision Process <S, A, R, T, discount>

Framework for modeling decision making with Markov process.

Algorithm :
1. Dynamic programming

1(s) and V(s) is updated alternatively
n(s) := argmax, {Z Pu(s,8') (Ra(s,8') + vV(S’))}

V(s) =) Pry(s,5) (Rae)(5,8) + V()
s’ (policyJt AJ| W0
maxJt 8 S
2. Value iteration

m(s) is calculated within V(s)

Vie1(s) :==max o > Pu(s,s') (Ra(s,8') +Vi(s'))
s (policy?t 21J| T =0l
max)

If assignment became equal, it's Bellman equation

V*(s) = mgx{R(s, a) + v Z P(s']s,a)V*(s")}.

(ROl randomness gt
)

3. Policy iteration (Policy evaluation + Policy improvement)

carpedm20

https://carpedm20.github.io

starting
Vo

Policy evaluation Estimate v;
Iterative policy evaluation

Policy improvement Generate n’ > 7
Greedy policy improvement

1) Policy evaluation:

evaluation
vV —V"

V
si—>greedy(V)

improvement

VseS: ‘/zj-kl (';) — Z T(Sr 7Tk,(.9), S’)[R(S: ﬂ'k(s)a S/) + /\I‘/)ﬂ(q,)]

2) Policy Improvement:

Tre1(8) = arg max E T(s,a,s")[R(s,a,s") +~V™(s")]
a
5!

Reinforcement Learning

Policy:

m(als) = P[Ar = a | St = s]

Return:

o0
Gt = Re41 +7Rev2 + .. = Z “y‘k Retk+1
k=0

carpedm20

https://carpedm20.github.io

ve(s) = Z 7(als) (Ra + v Z 2 V(s)

acA s'eS

Q-value:

qﬂ’(s' a) — R? + A,,' Z p:S’ VT;(S,

s'eS

Monte Carlo in RL

Monte-Carlo policy evaluation uses empirical mean return
instead of expected return

Importance Sampling

Estimate the expectation of a different distribution
Ex~p[f(X)] =Y P(X)f(X)
=) QX)*f (X)
X
~Ex-o E %f(X)]

Objective function in RL

J(0) = Er, [1]

= Z d(s) Z TL'Q(S- 3)Rs,a

sES acA
VoJ(0) = Zd S)Z mo(s, a)Volog mg(s, a)Rs.a
sES ac.A

— Ex, [Vs log (s, a)r]

]E'I'T.t_,l [VH |0g ’.«TH(S. 3):"]

carpedm20

https://carpedm20.github.io

VoE,[f(z)] = Vy Z p(x) f(x) definition of expectation

= Z Vop(z) f(z) swap sum and gradient
\Y%
=Y p(=) %()x) () both multiply and divide by p(z)
z Pz

1
= Zp(a:)vg logp(z) f(z) use the fact that Vg log(z) = ;ng

= E,[f(z)Vglogp(x)] definition of expectation
samples x and (X) score function f p(X) after a parameter update
Vo log p(x)
for the mea

Policy Gradient

- Cons : using Q is low variance but biased

Policy Gradient Theorem

m The policy gradient theorem generalises the likelihood ratio
approach to multi-step MDPs

m Replaces instantaneous reward r with long-term value Q™(s. a)

m Policy gradient theorem applies to start state objective,
average reward and average value objective

Theorem

For any differentiable policy my(s, a),
for any of the policy objective functions J = Ji, J,yr. or ﬁJavv,
the policy gradient is

VeJ(0) = E,, [Vglogma(s,a) Q™ (s, a)]

REINFORCE (Monte-Carlo Policy Gradient)
- Return = unbiased (but high variance) estimation of Q(a, s)

carpedm20

https://carpedm20.github.io

Monte-Carlo Policy Gradient (REINFORCE)

m Update parameters by stochastic gradient ascent
m Using policy gradient theorem
m Using return v; as an unbiased sample of Q™(s;, a;)

Al = aVylog mg(st, as) vy

function REINFORCE
Initialise # arbitrarily
for each episode {s;.a;.r.....s7_1.ar_1.r7} ~ 1 do
fort=1to T —1do
0 < 0+ aVylog mg(st, a)ve
end for
end for
return
end function

To deal with high variance of REINFORCE

1. Baseline (or Advantageous function)

Reducing Variance Using a Baseline

m We subtract a baseline function B(s) from the policy gradient
m [his can reduce variance, without changing expectation

E., [Volog mg(s, a)B(s)| = Z d™(s) ZV(;}TQ(S. a)B(s)

sES

- Z d™B(s)Vy Z (s, a)
ses acA

=0

m A good baseline is the state value function B(s) = V™ (s)
m So we can rewrite the policy gradient using the advantage
function A™ (s, a)

A™(s,a) = Q™ (s, a) — VT(s)
Ved(0) =E,, [Vylogmy(s.a) A" (s, a)]

Sum pi=1

2. Actor critic

carpedm20

https://carpedm20.github.io

m Monte-Carlo policy gradient still has high variance

m We use a critic to estimate the action-value function,

Quw(s,a) =~ Q™ (s, a)

m Actor-critic algorithms maintain two sets of parameters

Critic Updates action-value function parameters w
Actor Updates policy parameters f, in direction
suggested by critic

m Actor-critic algorithms follow an approximate policy gradient

Ved(0) = E;, [Vglogmy(s.a) Qu(s.a)]
Al = aVylogmy(s. a) Qu(s. a)

Critic Updates w by linear TD(0)
Actor Updates # by policy gradient

Q-learning (Value iteration update, off policy)

Q(S.A) = (5. 4) +a R+ max Q(S'.) Q(5.4))
+ epsilon greedy
a simple value iteration update, using the weighted average of the old value and the new

information

7(Se+1) = argmax Q(St+1,4)
epsilon greedy : ?

SARSA (on-policy)

carpedm20

https://carpedm20.github.io

SA

Q(S,A) < Q(S,A) +a (R+7Q(S", A) — Q(S, A))

Initialize ()(s,a), Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @) (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., s-greedy)
Q(S,A) + Q(S. A) + o[R+7Q(S", A) — Q(S, A)]
S« S A« A"

until S is terminal

Figure 6.9: Sarsa: An on-policy TD control algorithm.

On-Policy Control With Sarsa

Starting Q
N Q. T

Every time-step:
Policy evaluation Sarsa, @ = g

Policy improvement e-greedy policy improvement

Parametric

a finite number of parameters which does not depend on data

(linear regression, logistic regression)

Nonparametric learning

carpedm20

https://carpedm20.github.io

Models become more complex with an increasing amount of data.

(K-nearest neighbor, Decision Trees, Histogram)

Sequential data

1. Markov (decision) process : P depends only on the state attained in “one-step” before

event
P(Xn — :Bn|Xn—1 = :Bn—l:Xn—Z = Tp-2,5--- ,Xg = 33[!) = P(Xn = $n|Xn—1 - mn—l)

2. RNN

Neural Network

computing systems inspired by the biological neural networks composed of neurons

SVM loss

1
=5 ZL,- + AR(W)

regularization loss

L; = Z max(0, w}"x,- —wix;i + A)

1 data loss
J#yi =

1l | delta 1 -

] 11 I score

scores for other classes score for correct class

score of the correct class to be higher than all other scores by at least a margin of delta.

(delta and regularizer coefficient works as same so only need one of them)

Softmax loss

L; = —log

1. Information theory : minimizing cross-entropy between softmaxed probability and true
distribution

2. Maximum Likelihood Estimation: minimizing the negative log likelihood of the correct
class

f-=np.max(f) <« Stablize softmax

p = np.exp(f) / np.sum(np.exp(f))

Sigmoid loss

carpedm20

https://carpedm20.github.io

1 e’

T 1tec e +1

S(x)

Minimizing cross-entropy between sigmoided probability and true distribution

RNN
h_t=tanh(W [x_t; h_t-1] + b)
o = softmax(W h_t + b)

#LSTM
f,i,c’,o=f(W][x_t;h_t-1]+b). f, i, 0:sigmoid, ¢’: tanh
ct=f*ct1+i*c

h_t=o0 *tanh(c_t)

1. NS xdthE HIESZ & A o=
2. 0|8 cE NRDE=>cZ&E
A

3. = x2O] HAN =8 210 L2l => h2

Vanishing & Exploding gradient
- 0<=0d sigmoid x <= 1/4
- 0O<=0dtanhx <=1
Gradient contributions from “far away” steps become zero by chain rule
1. Proper initialization
2. RelLU instead of tanh or sigmoid

3. LSTM : if f gate is 1 : no vanishing gradient => long term dependencies can be learned

Backpropagation
1. Forward pass
2. Compute error
3. Backward pass
4. Repeat

carpedm20

https://carpedm20.github.io

initialize network weights (often small random values)
do
forEach training example named ex
prediction = neural-net-output(network, ex) // forward pass
actual = teacher-output(ex)
compute error (prediction - actual) at the output units
compute Aw, for all weights from hidden layer to output layer // backward pass
compute Aw; for all weights from input layer to hidden layer // backward pass
continued
update network weights // input layer not modified by error estimate
until all examples classified correctly or another stopping criterion satisfied
return the network

Backpropagation Through Time

A weight is updated with sum of gradient for each time step (because weights are shared)

Black box model vs White box model
Advantage:
- Performance
- End-to-End optimization
Disadvantage:
- Interpretability
- Can this network tell a Husky from a Poodle?
- Which objects are easy to classify for the algorithm, which are difficult?
- Which part of a dog is the most important for being able to classify it correctly? The tail or the
foot?

- If | photoshop a cats head on a dog, what happens, and why?

Curse of dimensionality
With classical non-parametric learning algorithms (e.g. nearest-neighbor, SVM, etc.), the learner
will need to see at least one example for each of these many configurations.

of data is exponentially increasing so solution in low dim can’t be applied to higher dim
VAE vs GAN
VAE: maximum likelihood

- assign high p to any point that occurs frequently (also blurry images).

- where the latent is important

GAN: GAN loss {D_real + D_fake} + {G_fake} is highly dependent on how D is optimal

carpedm20

https://carpedm20.github.io

- avoid assigning high p to points that the discriminator recognizes as fake (such as
blurry images)
- GAN convergence does not guarantee the performance convergence
- Mode collapsing
1. Solving MiniMax problem:
But train D, G alternatively makes NN undistinguishable between minimax and
maximin

In maximin, G could just generate single image that can fake the D (non optimal)

G* = min max V(G, D).
G D

G* = max min V (G, D).
D G

2. No quantitative loss:
Fake or not is subjective based on D (unlike autoencoder loss in VAE)

Even when G does not cover all modes, it’s still fine with GAN loss
Blurry image : VAE high p, GAN low p

Softmax = exp(x_i) / sum_j exp(x_j) /)t 2 t& &t 0| =

0 or infinite division. Can avoid with - max(x_i) to all terms.

REINFORCE = E[R d log(p)]S & & 5t24 o

Ery [Vologme(s, a)r]

- Reducing Variance Using a Baseline : E[(R - mu) d log(p)]. Gradient Ot 2 J| i 2 0l update

t£&3s.

- The advantage function has lower variance since the baseline compensates for the

variance introduced by being in different states.

Policy-Based RL
& & : learn stochastic policies, continuous action spaces
&t & : Evaluating a policy is typically inefficient and high variance

(may receive very different rewards for similar or even identical behavior)

carpedm20

https://carpedm20.github.io

[Problem solving]

http://ronniej.sfuh.tk/array-pair-sum/

Anagram O(2n) = O(n)
def anagram(a, b):
if len(a) != len(b):

return False

counter = {}
forcin a:
¢ = c.lower()

if ¢ not in counter:
counter[c] = 1
else:
counter[c] += 1
forcin b:

¢ = c.lower()

if c not in counter:

return False
counter[c] -= 1
if counter[c] < 0:
return False
return True
print(anagram('Eleven plus two', "Twelve plus onn'))
Max contiguous sum
def max_cont_sum(array):
max_sum = -9999
max_sum_sofar = array[0]

for num in array[1:]:

carpedm20

https://carpedm20.github.io

max_sum_sofar = max(num, max_sum_sofar+num)
max_sum = max(max_sum, max_sum_sofar)

return max_sum

print(max_cont_sum([1,2,3,-100,1,2,1]))

Kth Largest Element in Array
def find_k(array, k):
for k_i in range(k):
for idx in range(k_i+1, len(array)):
if array[idx] >= array[k_i]:
array[idx], array[k_i] = array[k_i], array[idx]
print(array)

return array[k]

print(find_k([0,-1,5,4,2,1,3], 3))

Powerset (permutation)
#1([3, 1, 8])
#={[3]+xinf([1,5]) }
+{xinf([1,5])}
def powerset(x):
answers =[]
if len(x) <= 1:
return [x, []]
else:
for item in powerset(x[1:]):
answers.append([x[0]] + item) # [1] + ([2], [])
answers.append(item) # [2], []

return answers

reverse string and omit multiple space
def reverse(string):

split_string =[]

tmp =""
for char in string:

if char ==

carpedm20

https://carpedm20.github.io

if tmp 1=""
split_string.append(tmp)
tmp =""
else:
tmp += char
split_string.append(tmp)

return " ".join(reversed(split_string))

def reverse(string):

return " ".join([word[::-1] for word in string[::-1].split()])

def reverse(string):

return " ".join(reversed(string.split()))
Return pairs where sum is k
def array_pair_sum(array, k): # O(n*2)
answers =[]
array.sort() # O(n logn)
for idx, num in enumerate(array):
if kK - num in array[idx+1:]: # O(n"2)
answers.append([num, k-num])

return answers

def array_pair_sum(array, k): # O(nlogn)
answers =[]
array.sort() # O(n logn)
left, right = 0, len(array) - 1
while left < right:
tmp = array[left] + array[right]
if tmp == k:
answers.append([array[left], array[right]])
elif tmp < k:
left += 1
else:
right += 1

return answers

carpedm20

https://carpedm20.github.io

def array_pair_sum(array, k): # O(n)
answers =[]
table = {}

for idx, num in enumerate(array):
if k - num in table:
answers.append([num, k-num])
else:
table[num] = True

return answers

check combined two string
def check(a, b, merge):
if len(a) + len(b) != len(merge):

return False

if not a or not b or not merge:
if a + b == merge:
return True
else:

return False

if a[0] '= merge[0] and b[0] !'= merge[0]:
return False

elif a[0] == merge[0] and check(a[1:], b, merge[1:]):
return True

elif b[0] == merge[0] and check(a, b[1:], merge[1:]):

return True
return False
print(check("abc", "def", "dabcef"))
Check binary tree
def isBT(tree, min_val=-999 max_val=999):

if tree is None:

return True

carpedm20

https://carpedm20.github.io

if not min_val <= tree.val <= max_val:

return False

return isBT(tree.left, min_val, tree.val) and \

isBT(tree.right, tree.val, max_Val)

Convert array in-place using constant extra space.
def get_index(idx, N):
return (idx % 3) * N + idx // 3

def convert_array(array):

N = len(array) // 3

for idx in range(len(array)):

swap_idx = get_index(idx, N)

while swap_idx < idx:

swap_idx = get_index(swap_idx, N)

array[idx], array[swap_idx] = array[swap_idx], array[idx]

return array

array = list("1234abcdzxyw")

print(convert_array(array))

HHHH

Quicksort

def partition(array, start, end):
if start >= end:
return start
else:
pivot = start
for idx in range(start+1, end+1):
if array[idx] <= array[start]:
pivot += 1
array[idx], array[pivot] = array[pivot], array[idx]

carpedm20

https://carpedm20.github.io

array[start], array[pivot] = array[pivot], array[start]
print(array[start:pivot], array[pivot], array[pivot+1:end+1])
return pivot

def quicksort(array):
def _quicksort(array, start, end):
if start >= end:
return
else:
pivot = partition(array, start, end)
_quicksort(array, start, pivot-1)
_quicksort(array, pivot+1, end)
return _quicksort(array, 0, len(array) - 1)

Sort
def mergesort(array):
less =]
equal =]
greater =]

if len(array) > 1:
pivot = array[0]
for x in array:
if X < pivot:
less.append(x)
elif x == pivot:
equal.append(x)
else:
greater.append(x)

return mergesort(less) + equal + mergesort(greater)
else:
return array

Binary search

import math

def binary_search(array, find):
start=0
end = len(array) - 1

while True:
idx = int(math.floor((start + end)/2.0))
if find == array[idx]:
return idx

carpedm20

https://carpedm20.github.io

elif find < array[idx]:
end =idx -1
elif find > array[idx]:
start = idx + 1
if start >= end:
if find == array[start]:
return start
return False

def fibonacci(num):
if num == 0:
return 0
elif num == 1:
return 1
else:
return fibonaci(num-1) + fibonaci(num - 2)

def fib(n, cache={}):
ifn==1:
cache[1] =1
return 1
elifn==2:
cache[2] =1
return 1
else:
if n not in cache:
cache[n] = fib(n-1, cache) + fib(n-2, cache)
return cache[n]

import numpy as np

class NQueeun(object):
def __init_ (self, size):
self.size = size
self.rows =]

def place(self, start_row=0):
if len(self.rows) == self.size:
print(self.rows)
return self.rows
else:
for row in range(start_row, self.size):
if self.is_safe(row, len(self.rows)):
self.rows.append(row)
return self.place()
else:
last_row = self.rows.pop()

carpedm20

https://carpedm20.github.io

return self.place(last_row + 1)

def is_safe(self, row, col):
for thread_col, thread_row in enumerate(self.rows):
if row - thread_row + col - thread_col == 0:
return False
elif row - thread_row == col - thread_col:
return False
elif row == thread_row or col == thread_col:
return False
return True

def print(self):
board = np.array([[''] * n] * n)
for q in self.rows:
board[self.rows.index(q), q] = 'Q'
print(board)

n=9

queen = NQueeun(n)
queen.place(5)
queen.print()

import heapq
import numpy as np

G = {1: {2:10, 3:12}, 2:{3:1, 4:5}, 3:{4:2}, 4:(}}

def dijkstra(G, start):

d={}
prev = {}

for vin G.keys():
d[v] = np.inf
prev[v] = None

d[start] = 0
s =]
q=1
for v in G.keys():
heapq.heappush(q, [np.inf, v])

while len(q) != O:

u = heapqg.heappop(q)
s.append(u)

carpedm20

https://carpedm20.github.io

for v in G[u[1]].keys():
if d[v] > d[u[1]] + G[u[1]][v]:
divl = d[u[1]] + G[u[1]][v]
prev[v] = u[1]

print d
dijkstra(G, 1)
import unittest
class DijkstraTest(unittest. TestCase):

def test_dijkstra(self):
self.assertEqual(1,1)

if _name__=='_ main__"
unittest.main()

carpedm20

https://carpedm20.github.io

[Z2]
0o oo
f(x) = O(g(x))

dICelAE FHeE

SHAIENOIS ZHEHE Sel™ U OfEH oHZ & el

Hhollel MXl Ecl Zo Hed, 282 o E ot

Heap vs Stack

depth first search : stack + 2t & =2 Xl 3

H 22l :is not released, not accessible
compiler, interpreter, jit =& 112 2| &9l
compiler?t interpreter2| & &
Encapsulation (public, private) : isolating implementation details, prevent mistake
==============> Refactoring

Lambda function

Garbage collection

Functional programming : stateless

GPL

[==]

dx/dy = derivative of x “with respect to” y

Integration by parts

/udv:uv—fvdu.

log(x+10) _1d4 2t
sin(x*2) & et
sin(x2) Ol =2l 2t

==============> |imit2| & 2|
1. Derivative : sensitivity to change of value
2. Partial derivative

3. Gradient

4. Hessian

5

. Jacobian

carpedm20

https://docs.google.com/document/d/1qvDURG3MB7qddWc5zM8AU8ejqSbna0Ep4L90Nyj9eP4/edit#bookmark=id.eq271kfcbiov
https://docs.google.com/document/d/1qvDURG3MB7qddWc5zM8AU8ejqSbna0Ep4L90Nyj9eP4/edit#bookmark=id.f2oqjhohxizw
https://carpedm20.github.io

Find n prime number
metric2| & 2| 2t 0fl Al (Euclidean 2510 1A

np-complete

s
i}

Turing machine : tape (memory), header, state, transition. mathematical model of computation
==============> Turing completeness : A system that can simulate any Turing machine
(can solve any computation problem)

Finite state machine : state, transition

‘OHﬂ
k=

binomial, multinomial, gaussian
==============> random variable0| 2 X : function X: Q—R
- pdf: A relative likelihood that the value of the random variable
- pdfe £A, pdfIt 1 0/&= JtE &= U= 0l R (ex. uniform dist)
Variance
Cov[X. Y] = E[(X — E[XD(Y — E[Y])]
Covariance :
IID : previous results are not related, distribution is identical over time
==============> Bayesian statistics :

interpretation of p is degree-of-belief interpretation. Takes into account of the prior distribution

Joint probability : p when all variable falls into specific value

Conditional probability : p of Y when X is known

P(ANB)

PA|B) = =

Independence

P(A N B) = P(A)P(B)

Marginal : In distribution with collections of variable, p of the variables contained in

the subset

1st, 2nd, 3rd, 4th moment : measure of of the shape of a set of points.

==============> Mean => variance => skewness => kurtosis

s=============D> Bayes rule

carpedm20

https://docs.google.com/document/d/1qvDURG3MB7qddWc5zM8AU8ejqSbna0Ep4L90Nyj9eP4/edit#bookmark=id.w70mxmoafpl1
https://carpedm20.github.io

- Likelihood: how probable is the [evidence] given the hypothesis
- Prior: how probable was [hypothesis] before observing evidence
- Posterior: how probable is hypothesis given the observed evidence

- Priori: how probable is the new [evidence] under all hypothesis

Determinant: identity, transpose, inverse, multiplication

Eigenvector: In a linear transformation, non-zero vector that only changes by an scale
Eigendecomposition: should have n linearly independent eigenvectors

Singular Value Decomposition

==============> Matrix inversion

Pseudoinverse : generalization of inverse matrix. Used in finding least squares |Ax-b|=0

solution
A=UZV"
A=VZuU"
. . 1/o,
A=Ul VT — A=V U
% 1/o. 0
0

AX=B _; geyp)1=0, X=A"B geypy=0, X=AB

linearly independence : a linear combination of the others
Orthogonal vector & matrix

==============> Norm : length or size : scalar, sum, positive, zero-vector

==============> Metric : distance : symmetry, sum, positive, zero-equality

Newton Method : approximation to find root of a function. x := x - f/f’

[01ele]E]

==============> Maximum Likelihood Estimation

L2 loss, 12 regularizer, 12 norm

carpedm20

https://docs.google.com/document/d/1qvDURG3MB7qddWc5zM8AU8ejqSbna0Ep4L90Nyj9eP4/edit#bookmark=id.hm89aqcqmtmw
https://carpedm20.github.io

"

S =) O — h(x;))?
i=0

nn & 2

gradient descent 2| & 2| ot A

stochastic gradient descent 82| 12| J &

regression2| & 2| 2t 0l Al & 12| S (linear regression & &)

linear regression2| & 2|2t & &, A0 0 E &H, optimal2 ¥ =4 (least square)
classification2| & 2| 2t 0l Al (logistic regression 2 &)

logistic regression2| & 2| ot & &

supervised, unsupervised, semi-supervised & 2|

semi-supervisedJt S 28t 0| R

clustering & 2

clustering 0l Al (k means Z &)

kmeansJt & Xl HENH SOOIESt=X €%, ke HEH £&Fot=X

kmeansS| &) HH(HE2 A28 = U= HO0IH 2EIt ZoHMUS, S A 2040t
UM BN ULSH k -2 &)

cross validationO| & X| (k-fold cross validationO| Zot1) 11&Z M= 017 Z& OOl & It limit St LI Dt)
reinforcement learning2| & 2| (reward, state, action, policy, state transition)

rl 200l E 28 (g-function)

g-learningO| off-policy ! X| on-policy 2! X

ol

H

means

non bayesian 1} bayesian2 Xt 0|

non parametric learnin2| & 2| 2t 0l Al (& i = binomialOlet) =0l 014 S & HLEH pIt

Z 35I| H20l. 8 <2 histogram). sequential dataS & ot = ©| 0l Al (hidden markov,
bayes, rnn)

mn2| & 2|2t A

mnl & & It =& (vanishing gradient) ol 2 2 Istm.

rnndt hidden markovel E&&E HlW (mn2 THet0IE A HoH A 28201 © K X X 8 end-to-end
240l ct gradeint descentdll Al optimal 22! &)

neural network & 0| 0| £ 28 (backpropagation)

mn2| SO0l E 28 (time delayed backpropagation)

big one black box £ 2 1} neural net22 22 (0| & 22 & 2|5t= term0] U =0l 71 0]
ote)S Bl WM S M nn& 2 modulestel 229 HHE (HE2 2E expresivity)t 2 £€8, H&E 2
2t2t0l D 1 2E =2 condition= U RIOF oA 22 2 &)

curse of dimensionality

bayesian setting= @ & CtM =X (distributionS & St= Al trickyot) 212t = H&tGt=H Qe E)

carpedm20

https://carpedm20.github.io

prior (CIOIE) 8 EZ 28 : Gibbs Sampling (\in MCMC)
olE 0= 20| X &9

VAE vs GAN

Permutation
N queens

Kth Largest Element in Array

2018.01.31 update

How computer represent floating number : 0.2341234123e-3
How to deal with unbalanced tree

Explain dynamic programming and give me an example
Explain quicksort. Can we do better than n log n. Radix sort
Integral of log x

Difference between process and thread

How to find A-1

Hessian, Jacobian and when these are used in practice
Jacobian is composed of column vector of gradient

What is positive definite

Why newton method has such form (x := x - f/f)
2018.02.05 update
What is central limit theorem

The law of big number
Who can you derive mu(x) = E[x*2] - E[X]"2

carpedm20

https://docs.google.com/document/d/1qvDURG3MB7qddWc5zM8AU8ejqSbna0Ep4L90Nyj9eP4/edit#bookmark=id.95lcfwb6czns
https://carpedm20.github.io

Var(X) = E[(X — E(X))?]
[X? — 2X E(X) + [E(X)]?]
X?) —E[2XE(X)] + [E(X)]?

(X7) =
(X*) - 2E(X) B(X) + [E(X))*
(X7)
E(X7) -

E
E
—=E
=
= E(X*) — 2[E(X)]* + [B(X)]*
[E(X))*

How to sample from arbitrary continuous random variable with uniform distribution: A

X2

general method is the inverse transform sampling method, which uses the cumulative distribution

function (CDF) of the target random variable

Recommended Lectures

- CS231n: Convolutional Neural Networks for Visual Recognition

- £S294-158 Deep Unsupervised Learning
- (CS224n: Natural Language Processing with Deep Learning

- CS294-112 Deep Reinforcement Learning

carpedm20

http://cs231n.stanford.edu/
https://sites.google.com/view/berkeley-cs294-158-sp19/home
http://web.stanford.edu/class/cs224n/
http://rail.eecs.berkeley.edu/deeprlcourse/
https://carpedm20.github.io

